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1. Introduction 

The dynamics of animal and plant populations are influenced by many factors, 
and understanding the response of a population to a multitude of external 
factors can be very difficult.  Simulation models are a powerful means of 
representing such systems and allowing users to interact with them.  These 
models help to summarize our understanding of a species’ population 
dynamics, identify gaps in knowledge and enable rapid evaluation of 
management options.  Building population models, however, can be expensive 
in time, and may require specialist programming skills.  The DYMEX package 
is designed to overcome the bottleneck caused by inadequate computer 
programming resources and modelling expertise.  DYMEX enables the user to 
build a class of ecological models referred to as mechanistic or process-based 
models, without the need to know a computer programming language.  It is a 
modular modelling software package that consists of two parts: a Builder and a 
Simulator.  The Builder is used to create and modify the model, while the 
Simulator is used to run a completed model, and display the results of 
simulations. 

This User Guide is concerned with the Builder, while the Simulator is dealt 
with in a separate User’s Guide.  The Builder guide covers the following 
topics: 

 Building a new model (page 15) 

 Creating a lifecycle model (page 31) 

 Reading data into your model (page 102) 

 Manipulating data (page 109) 

 Using specialised data manipulation (page 123) 

Other documentation on the DYMEX CD Rom consists of a tutorial based 
around an insect lifecycle, and two tutorials based on plant lifecycles (an 
Annual and a Perennial plant). They allow you to learn the basics of model 
construction in your field of interest by constructing a new model step-by-step.   
Several example models are provided to illustrate different aspects and usages 
of DYMEX features.  A careful examination of these may be useful in 
understanding the paradigm underlying DYMEX.  A comprehensive on-line 
Help system is also provided.  It allows you to look up the meanings of terms 
used in DYMEX, the functions of the various DYMEX modules and available 
options and limitations.  All the documentation is included on the CD-ROM 
and the manuals and tutorials can be read by installing Acrobat Reader, which 
is also included on the CD-ROM. 

Some conventions used throughout this guide are as follows: 
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The exclamation symbols throughout the manual represent important notes. 

The light bulb represents examples and ideas that can be used when 
constructing a model. 

 

1.1  What is DYMEX ? 

DYMEX is a computer software package that enables you to interactively 
build and then run models of fluctuating populations of organisms in changing 
environments.  Ecologists can create a wide range of process-based population 
models without the need to know a programming language.  Models are 
structured around lifecycles, which in turn consist of the stages that individuals 
pass through during their life.  A DYMEX lifecycle describes cohorts of 
individuals and the processes that affect the size, age and number of 
individuals in the cohort (see What is a Cohort in DYMEX?, page 43). 

Models created within DYMEX consist of a series of modules, with each 
module responsible for a particular task.  Modules use information from other 
modules as input, and supply information to other modules.  DYMEX comes 
with a library of modules that can be incorporated into any model constructed 
with the Builder (Fig. 1-1).  Each module performs a specific function (for 
example, MetBase is used to read a standard set of meteorological variables 
from a file).  Models created in the Builder can be opened in the Simulator 
within which simulations can be run.  The results of these simulations can be 
displayed in tables, graphs and maps as well as exported to other programs. 

Fig. 1-1  A diagram of the function of the Builder and Simulator. 

 

 

 

Simulato
r

Builder

Models
Module
 Library
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Models will normally be developed around one or more Lifecycle modules.  
Other modules provide data to the lifecycle modules, or manipulate lifecycle 
output in some way.  Many modules have multiple uses (e.g. Function 
module) and may be used in several places in a model, while others are more 
specialised (e.g. the Soil Moisture module).  Most modules receive input from 
another module or from an outside source.  For example, the MetBase 
(Meteorological Database) module reads meteorological data from text files 
and provides the data as variables that can be accessed by other modules. 

 

1.2 What is the Builder ? 

The DYMEX Builder is a program that enables the creation of a model from 
the components (modules, processes, functions etc.) provided in the 
components library.  No computer programming is required in this process – 
modules are chosen, configured and interconnected using a graphical 
representation of the modules and lifecycles, and a series of dialogs.  The 
model can be built in several stages, with work saved at any stage to a file (the 
Model Description File, with name “filename.gmd”).  The Builder cannot run 
the completed model - the Simulator provided with DYMEX is used for that.  
Typically, a lot of switching between the Builder and the Simulator occurs in 
the process of creating a model.  Usually the best approach to building a 
complex model is to build a simple model first, verify that it runs correctly 
within the Simulator, and then iteratively extend the model further. 

1.3 Minimum Requirements to Run DYMEX 

The minimum requirements to run DYMEX are: 

♦ Pentium 400 MHz or better. 

♦ Windows NT 4, Windows 2000 or XP 

♦ 256 megabytes of RAM. 

♦ 200 megabytes of disk space. 

 

1.4 Installing and Running DYMEX 

 To install DYMEX on your machine 

1. Place the CD into the drive.  Installation should start automatically.  
However, if it does not, proceed as follows. 

2. Select Run… from the Start menu. 
3. Within the Run dialog box type d:\setup.exe.  If the CD-ROM drive 

is not the d: drive, then substitute the appropriate drive letter for d. 
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 To run DYMEX 

1. Go to the Start menu and find the DYMEX program group within the 
Programs group. 

2. Choose either the Builder or the Simulator to run the 
corresponding DYMEX component. 

 

1.5 Changes from Version 1 

The Builder has been considerably enhanced from Version 1.  For users 
familiar with Version 1, the following list details the major differences.  Those 
changes that may cause models to behave differently when moved to Version 2 
are shown in italics. 

 New modules are available, as follows:  Adjustable Circadian, Climate 
Change Scenario, Daydegree, Difference, Equation, Counter, 
MetManager, Discrete QueryUser, Accumulator (Running Mean), 
Storage, Switch and Weather. 

 Modules and their output variables can have descriptions associated 
with them. 

 The Event module may now have a user-defined delay between trigger 
and action, a programmable off condition, as well as multiple, 
independent action factors.   

 The Lifecycle module has been considerably enhanced, allowing 
branching of lifecycles, nested stages (Endostages), an immigration 
process, “exit” processes and many more lifestage outputs.  By default, 
Chronological Age is now in units of days (not timestep, as in Version 
1). If you built a model with a weekly timestep using version 1 of the 
Builder and it includes chronological age processes, then in order to 
run it in version 2 of the builder you will either need to change the 
manner in which chronological age is updated in the lifecycle 
properties dialogue box to “timesteps”, or modify all the chronological 
age processes accordingly.  Lifestage densities are calculated 
differently (see Section 6.19). 

 Summary Variables are now set in the Builder and can be manipulated 
using modules in a similar way to normal variables. 

 Models may be split into several files, with a main Model Description 
File and a number of auxiliary files.  This allows complex models such 
as a multi-species model to be firstly constructed as separate models, 
and then combined later (see Section 12). 

 Parameters for a module can be placed into a separate, named 
Parameter File. 
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 All the variables used in the model can be displayed together in a 
Variables window along with the source module of the variables and 
the modules where they are used. 

 Any parameter in any module may be replaced by either a function or a 
process.  Processes can now have associated descriptions. 

1.6 Changes from Version 2 

 The following list includes the major differences between Version 2 and 
Version 3.  In addition, a large number of minor improvements and bug fixes 
have been made to the Builder program. 

 Populations can be divided into separate sub-populations (demes)  (see 
Sub-population Structure, page 20) within the model to represent, for 
example, genetic types or spatial units.  When this is done, variables 
and parameters that take part in the sub-population structure have 
components that correspond to each sub-population. 

 Operations on lifestage processes have been greatly simplified via a 
new Lifestage Window  (see The Lifestage Window, page 39).  This 
gives a much better overview of all the processes in the stage, allowing 
for a better understanding of how the model works.  It also reduces the 
number of dialog operations that were necessary in earlier versions.  

 The Lifecycle Window has been changed to the same format as that in 
the Simulator.  The window can now be sized, zoomed and printed. 

 The Variables Window has been much enhanced.  Variables can be 
sorted and the window gives access to dialogs that allow the variables 
and associated modules to be edited. 

 The Lifecycle module now can contain factors that belong to the 
lifecycle as a whole (i.e., they are not part of lifestage processes).  This 
can avoid redefining the same parameter multiple times. 
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2. An Overview of DYMEX Models 

This section describes the fundamentals of a DYMEX model.  It is important 
that the user understands these concepts to effectively build a model using 
DYMEX.  

Building a model in DYMEX involves choosing the required modules from the 
component library and interconnecting them in a way that describes the 
essential features of the system being modelled.  Although DYMEX makes the 
mechanics of this process relatively easy, some planning will eliminate a 
considerable amount of backtracking later.  It is always important to keep the 
aim of the modelling exercise in mind and to construct a model that addresses 
that aim in the simplest way.  Many of the more general modelling issues are 
discussed elsewhere.  See for example M. Gillman and R. Hails,(1997) An 
introduction to ecological modelling:  Putting Practice into Theory. Blackwell 
Science, Oxford; or J.L. Goodenough and J.M. McKinion (eds.), (1992) Basics 
of Insect Modelling ASAE monograph number 10. 

2.1 Variables 

As with all models, a DYMEX model has a number of state variables that in 
their entirety describe the system at any particular time.  Examples of such 
variables in a particular model may be Maximum Temperature, Rainfall, 
Daylength, Total No of Flies, and Egg Development Time.  Changes in the 
values of variables take place between one timestep and the next.  The values 
of all DYMEX variables are updated by their associated modules.  A history of 
values of the variables throughout a simulation run constitutes the results of 
that simulation, and they are retained for tabulation or charting.  All variables 
have names, and (with the exception of a few predefined names) the modeller 
is responsible for naming each variable.  Variables may also have a short name 
(mnemonic) and description, and are often represented in Builder windows by 
the symbol . 

One type of state variable that is commonly encountered in a DYMEX model 
is used to summarise or report on some internal model processes.  For 
example, we might have a variable that outputs the average Physiological Age 
of individuals in a lifestage.  This type of variable may not be defined at all 
times during a simulation run (for example at times during the simulation when 
no individuals of that lifestage are present), and should only be used as input to 
modules or functions with caution. 

Delay Variables are used in DYMEX to describe intervals of time, for 
example the time required for an egg laid on a particular day to hatch.  Such 
variables do not have their values assigned to them until the time period that 
they are monitoring has terminated (i.e., the eggs have hatched in the 
example).  These variables are designed for use as output to graphs and tables 
only, and must never be used as inputs to modules or functions.  They include 
such commonly used lifestage outputs as Development Time and Cohort 
Duration. 

State 
Variables 

 

Delay 
Variables 
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If a model uses sub-populations (demes) , some variables will contain multiple 
values for each timestep.  These variables are termed Demed Variables, and 
are indicated in the Builder with the symbol .  Module inputs that require a 
single-population input variable may not be linked to a demed variable.  The 
converse is not true.  If a single-valued variable is linked to a module input that 
requires a demed variable, the separate input variable components will all be 
set to the value of the input variable (see Fig. 2-2).  Special module 
(DemeSplitter and DemeStatistics) can be used to extract the component 
values from demed variables as standard variables. 

There are two pre-defined, special variable names used in DYMEX.  The first, 
“(none)”, is really no variable at all – it is the name used in places where no 
other variable name has been specified.  For example, all module inputs are 
initially set to this name.  The other name, “Simulation Id”, refers to a variable 
that, when the model is run, will take a value equal to the sequence number of 
the current simulation.  Hence, in single simulation runs (see Simulator User’s 
Guide, Section 18), its value will always be 1.  Except for specialized 
purposes, there would rarely be a need to use this variable in a model. 

A further type of variable (Summary Variable) can be used to summarise the 
values of other variables over a period of time.  For example, a model may 
have a standard lifecycle output variable named “Total Plants” that supplies the 
total number of plants in a simulation at any time.  For running and comparing 
multiple simulations, we may want a single number that summarises the effect 
of some treatment regime on that plant population.  The most convenient way 
to do this would be to create a Summary Variable based on “Total Plants” that 
gives the average value for “Total Plants” over (say) the last year of the 
simulation.  As many summary variables as required can be created, and 
Summary Variables can be manipulated with Summary Modules (see next 
Section and Fig. 2-3).  The creation of Summary Variables is dealt with in 
Section 11. 

2.2 Modules 

Understanding the function of modules and how they interact in a DYMEX 
model is central to the model-building process.  In its simplest form, a module 
is a black box that may have one or more input variables and has one or more 
output variables, as shown in Fig. 2-1a.  The module is responsible for 
calculating the value of its output variables at each time step.  Several different 
types of modules are available for use in a DYMEX model, each performing a 
different function.  For example, an Expression module could have two inputs 
and one output, and calculate the sum of the two input variables, assigning the 
result to the output variable (Fig. 2-1b). 
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Fig. 2-1 (a) Schematic representation of a DYMEX module; (b) a DYMEX 
“addition” module 

Module +I1

I2

I1+ I2

(a) (b)  

Modules are connected by linking each of their input variables to an 
appropriate output variable of another (or the same) module.  During a 
simulation, the value of that output variable is then used as the input value.  
Fig. 2-3 shows an example of a typical model and its linkages between 
modules.  For the moment, disregard the part of the diagram to the right of the 
long, thin rectangle labelled “Standard Model Output”.  The model makes use 
of the Soil Moisture module, which has two input variables, Rainfall and 
Evaporation.  The Rainfall input is linked to the rainfall output of a File Reader 
(DataFile) module, while the Evaporation input comes directly from an 
Evaporation module.  Input variables must be linked to output variables from 
other modules that supply the appropriate information, and the correct 
matching of units must be taken care of by the modeller.  For example, not 
only must the rainfall input of the Soil Moisture module be linked to a rainfall 
output from another module, these outputs and inputs must be in the same units 
(e.g., mm or inches).  The current version of the Builder does only the most 
basic checks that links are compatible.  In models that use sub-population 
structure, demed variables may not be connected to inputs that require standard 
variables (Fig. 2-2).  Note that in this case, the Builder does not allow such a 
connection.  Sometimes an input variable is optional, in which case it does not 
need to be linked to another variable.  Note the feedback loop in the Lifecycle 
module, where an input variable is linked to an output of the same module.  

Fig. 2-2 Module inputs, showing how variables with and without subpopulation 
structure can be connected as module inputs.  

 

It should be evident by now that when we refer to a module input, we are not 
referring to information read from a file or supplied via a dialog, but the points 
of connection to a “previous” module’s output variable.  Data from a source 
external to the model (model input) such as data files or from the keyboard 
(through dialogs) is accessed via specialized modules (as shown in the Model 
Input block in Fig. 2-3).  This information then becomes available via that 
module’s output variables (as shown by the arrows from the module to the 
Standard Model Output block). 
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Fig. 2-3 A DYMEX model showing the flow of information (variables) between 
modules.  

The model designer can configure most modules to adapt them to their 
required task.  For example, Expression modules referred to earlier can be set 
up to add, multiply or average their input variables.  The Lifecycle module in 
particular is extremely flexible, and can be set up in many ways to suit the 
particular organism being modelled.  Several of the modules are sub-models, 
whose function is to do a specific job. For example, the 1-layer Soil Moisture 
module simulates the water balance in the top layer of soil.  It is anticipated 
that one way that DYMEX will be enhanced in the future will be by the 
addition of new modules.  The currently available modules and their 
application are summarised in Table 2-1.  Note that some modules are 
available in several “varieties” (for example, the “Event” module can have one 
or more event output variables, with the additional option of a delay between 
the triggering condition and the action).  These have not been shown separately 
in the Table, but these differences will be discussed in the appropriate section 
of the Guide.  Modules that can be used to manipulate demed variables (i.e., 
they can take part in the model’s sub-population structure) are indicated with 
the symbol . 

As alluded to above, all module output variables are available as part of the 
model output for tabulation, graphing, etc.  Each of these outputs is an array of 
values that stores the variable’s values for each time step over the period of a 
simulation.  Collectively, these outputs constitute the Standard Model Output 
(Fig. 2-3).  Any of these output variables may be summarised, as described in 
Section 2.1.  These summaries are available as Summary Variables, and the set 
of Summary Variables constitutes the Summary Model Output (Fig. 2-3).  
Modules may be added to a DYMEX model to manipulate these Summary 
Variables, creating more Summary Variables in the process (as shown by the 
two modules and their outputs at the right of Fig. 2-3).  These Summary 
Modules are updated only once during a simulation run, directly after the 
simulation has finished running.  Only some module types are available for use 
as Summary Modules. 
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Table 2-1  Modules available in the current version of DYMEX, with a summary 
of their function and a reference to the sections in the Builder Guide where they 
are described in detail. 

Module Type Description Section  

Circadian Fits a daily cycle to minimum and maximum values 9.1  

Counter Keeps a counter incremented conditionally 8.3 

DataFile Reads model variables from a file  7.4  

DegreeDay Calculates degree-days above a threshold 9.7  

Daylength Calculates daylength from latitude and day of year 9.3  

Difference Calculates change in a variable between timesteps  8.6  

Equation Combines input variables using an equation 8.2 

Evaporation Calculates Class A Pan Evaporation 9.4  

Event Simulates date or threshold controlled management 9.2 

Expression Combines input variables using simple maths 8.1 

Function Transforms an input variable by use of a function 8.4 

Lifecycle Models population dynamics of a cohort-based lifecycle 6 

MetBase Reads meteorological data from a file 7.5  

Metman Reads long-term average meteorological data 7.6  

QueryFile Inputs model constants from keyboard or file 7.3  

QueryUser Inputs model constants from keyboard 7.1 

QueryUser 
(Discrete) 

Inputs model constants from a discrete set of values from 
keyboard 

7.2  

RunMean Calculates a running mean (or total) of a variables values 8.5  

Soil Moisture A simple soil moisture balance model 9.6 

Storage Simulates a storage with inflows and outflows 8.7  

Switch Allows selection of alternative variables 8.8  

Timer Provides model timing 5  

Weather Calculates daylength, evaporation and daily temperature 
cycle, etc. 

9.5  

DemeSplitter Splits a demed input variable into its components 9.9 

DemeStatistics Calculates totals and proportions from a demed input 
variable 

9.9 
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2.3 Functions, Processes and Parameters 

Some modules can be adjusted by setting the values of one or more 
parameters.  Parameters are somewhat similar to variables, except that their 
value is fixed during any simulation run.  For example, the Soil Moisture 
module has 3 parameters, the Soil Moisture Capacity, the Evapotranspiration 
Coefficient and the Drainage Rate (Fig. 2-4 shows this schematically, with the 
parameters indicated as dark grey squares). Thus parameters can be thought of 
as devices for adjusting a model to a particular place or situation.   

Fig. 2-4  A DYMEX module with 3 parameters, showing how a parameter can be 
replaced by a functional relationship 

Module

FunctionFunction

ParametersParameters

 

Any DYMEX module parameter can be replaced by either a function or   
process.  In the Soil Moisture example, we may have a relationship between 
the value of the Evapotranspiration Coefficient and some other variable 
(perhaps crop biomass).  DYMEX allows us to substitute that relationship for 
the parameter (Fig. 2-4).  In that situation, we end up with some additional 
parameters (the parameters of the functional relationship or process specified), 
as well as a new de facto input variable to the module (crop biomass).  The 
term Factor is usually used in DYMEX to refer to a component that could be a 
parameter, function or process. 

A DYMEX Function consists of a function shape (called a Function 
Template), a driving variable (the independent or x-variable) and a set of 
parameters (which can be replaced by a function or process, in turn).  DYMEX 
provides a library of over 20 commonly used function templates.  If these 
templates are insufficient for any situation, the modeller can define a new 
template and add it to the function template library.  The pre-defined function 
templates are described in the Help system. 

A Process is a set of factors that are combined using a functional relationship 
termed the Combination Rule.  On evaluation, each of the component factors is 
evaluated first, and the results are then combined using the Combination Rule 
to give a final value. 
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3. Builder Fundamentals 

This section describes the appearance of the Builder program, and the 
functions of its various component windows.   

3.1  Appearance 

Model construction is based around the Component Window where modules 
are added, removed or modified.  All the modules used by the model are listed 
within the Component Window, where they are shown as small rectangular 
graphics, with a different graphic associated with each module type.  This 
helps the user to visualize the structure of the model, as well as allowing easy 
access to modules for examination and modification. 

Fig. 3-1 The Component window in the Model Builder.  Note the Lifecycle 
module, which has been opened to show some module details. 
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Clicking on the small square (containing a ‘+’) to the left of the module 
graphic provides more information about that module.  The major components 
of the module are shown as the main branches of a tree diagram originating 
with the module graphic.  Similarly, these components can be opened out 
further to provide more detailed information. 

Many Builder operations are available from the menu.  Menu commands 
followed by ellipses (…) will open dialog boxes.  Double-clicking on the 
appropriate module or module component in the Model Components window 
is an alternative method of access to some of these operations. 

To access a particular module, double click its graphic.  To get further 
information left click on the “+” to the left of the graphic, and then double-
click on one of the displayed module components. 

3.2 Module Symbols 

In the Component Window, the display of each module can be expanded so 
that processes and variables entered into each module may be viewed.  All 
modules can be fully expanded at once by choosing Expand All Branches.  
Selecting the Collapse All Branches option from the menu will close up a 
fully expanded diagram.   

When a module representation in the Component Window is expanded, many 
of the features of the module have symbols next to them (Fig. 3-2).  These 
symbols indicate the type of component.   

Fig. 3-2  The Component Window within the Model Builder. 

 

The components that are represented in the Component Window are tabulated 
in Table 3-1.  At this stage, the use of some of the features may not be clear, 
but these will be explained in later sections. 

Expanding 
Module 

Windows 
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The name of a module can be changed by clicking on it once when it is 
selected in the Component Window, and then typing a new name into the 
resulting edit window. 

Modules can be opened for modification by either double clicking on the 
module in the Component Window or by choosing Edit Module… from the 
Model menu.  When multiple modules are open, switching between the 
modules can be done from the Window menu where the open modules are 
listed.  Closing a module by left-clicking on the ‘close window’ control button 
performs the same operation as clicking on the OK button (ie. all settings are 
saved). 

When selected, most modules will open a dialog box (e.g. Circadian module).  
The Lifecycle module opens a window depicting the lifestages within the 
lifecycle.  The lifestage currently selected is highlighted with a pink edge.  
Buttons on the lifestage allow access to the various processes and associated 
variables. 

Table 3-1  Component Window symbols and their definition. 

Symbol Definition Symbol Definition 

  A module, see Table 2-1  Parameter/constant 

  The set of output variables  A resource variable 

  The set of input variables  A lifecycle/lifestage 

 A variable  An environment 

  A demed variable   A process 

 A function  An “action” (function or 
constant) 

 Subpopulation structure   Setting/Combination Rule  

 

3.3 Menu Commands 

The menu bar changes in appearance with the window that is currently active. 
Table 3-2 lists the functions of the top level menu items.  Note that many 
actions available from the menu can also be invoked by clicking on the 
appropriate symbols or buttons in the Component or Lifecycle windows. 
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Table 3-2  Menu items and their function. 

Menu 
Item 

Description of function 

  The File menu enables new models to be created or existing models 
to be opened, saved and printed (see Building or Modifying a 
Model, page 17).  

  The Model menu enables the addition, editing and removal of 
modules, function templates and environments from a model, the 
setting of the model description, including its name and author, as 
well as access to the Simulator to run the completed model. 

  The Tools menu enables some operating characteristics of the 
Builder to be changed.  These settings include such features as 
colour, size, and model opening and printing options.  

  The Window menu enables the various windows open within 
DYMEX to be arranged. 

  The Help menu provides access to the help documentation. 
 

 The Lifecycle menu provides access to various features of the 
lifecycle, including the name, description, the sort order, and the 
input variables.  The addition and removal of lifestages and the 
addition of user-defined cohort variables are also performed via this 
menu item (see The Lifecycle Module, page 31). 

 The Lifestage menu enables the user to edit features of the 
currently selected lifestage including its name, the associated 
processes, the output variables and its associated environment 
resource variable.  (see The Lifestage Window, page 39). 

 

3.4 The Variables window 

The Variables Window displays the names of all variables that are used in a 
model.  Besides listing the names of the variables, the window can be used to 
make changes to the properties of any of the variables and to look at and 
modify the module that update each variable (source module).  In addition, the 
window lists all modules that makes use of the variable. 

To open the Variables Window, select the Variables option from the Model 
menu (note that the Model menu will only be present if the Model 
Components window is the active window).  A part of a Variable Window is 
shown in Fig. 3-3. 

The Variable Window lists the variables in two sections.  The top of the 
window (mostly light-green in colour) lists the normal variables, while 
summary variables are shown in a section at the end (coloured pink).  When 
the Variables Window is first opened, the variables are shown in the order that 
they are declared in the modules (module order).  A click on the “Name of 
Variable” header, will sort them alphabetically and a second click will sort 
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them in reverse alphabetic order.  Note that whichever way they are sorted, the 
summary variables will remain in one block at the bottom of the window. 

Fig. 3-3  The Variables Window within the Model Builder, showing both normal, 
demed and summary variables. 

 

To the left of the variable name, a symbol indicates whether the variable is 
demed  ( ) or not ( ).  Clicking on the name of a variable opens the Variable 
Properties dialog (Fig. 3-4), from which most properties of the variable 
(including its name and description) can be changed.   

Fig. 3-4  The Variables Properties dialog. 

 

Clicking on the name of a module in the “Source Module” or “Used in 
Module” columns opens the module dialog or window for the corresponding 
module.  More than one module may be shown in the “Used in Module” 
column if the variable is used in more than one module.  The “Used for” 
column indicates how the variable is used in a module.  If it indicates “Module 
Input”, the variable is directly connected to one of the module inputs.  If it 
specifies “Cohort Process (stagename)”, it is used as an independent variable 
in a lifestage process of the lifestage named “stagename”. 
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4. Building or Modifying a Model 

 To create a new model 
Select New Model from the File menu.   
This will create a new model containing only a Timer module and display it in 
a Component Window.  A new model is always created with a Timer module 
in it.  The Timer module may not be deleted. 

 To load an existing model 
Select Open Model… from the File menu, and select the required 
model from the Open File dialog.  If the model has been opened 
previously, it can be re-opened rapidly by clicking on its name at the 
bottom of the File menu.   
The model will be displayed in the Component Window, ready for editing. 

 To add a module to a model 

1. From the Component Window select the Add Module… option from 
the Model menu. 

2. In the module selection dialog (Fig. 4-1), select either Standard for a 
“normal” module, or Summary for a Summary Module. 

3. Select the required module type from the list box, and double-click 
on it, or click Ok, to add a new module of that type. 

Fig. 4-1  The Module Type selection dialog, used to add a new module to a 
model. 

 

The new module will be added to the end of current list of modules in the 
model.  The placement of the modules in relation to other modules needs to be 
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carefully considered, and can be changed using the Sort Order facility (Section 
4.4).  Note that Summary Modules are always placed after all standard 
modules, regardless of the sort order constants that they are given.  

All modules except the Lifecycle modules are configured using the Module 
Dialog, examples of which are shown throughout this User’s Guide (for 
example, Fig. 7-1).  Note that Summary Modules are indicated by the word 
“SUMMARY” placed under the module graphic at the top right of the dialog.  
Lifecycle modules are edited in the Lifecycle window (Section 6). 

Fig. 4-2  Part of Module Dialog, showing Summary Module indicator. 

 

4.1 General Considerations 

There is no required order in which to add modules, but it is important to give 
careful consideration to the order.  If you already have the model planned, then 
adding the modules that supply data may be your first choice (page 102), or 
you may prefer to add a lifecycle module first to construct the lifecycle 
structure (page 31). 

Note that while there is no set order on how to add modules when the model is 
being constructed, simulation proceeds in the order that the modules are listed 
in the Components Window.  Therefore the ordering of modules will need to be 
carefully considered to obtain the required effect.  For example, modules that 
supply data to another module will usually come before that module (see 
Module Order, page 21 for more information on module order). 

The dynamic aspects of some modules are not fully described in this Guide and 
further information on their use can be found in the Model Simulator User’s 
Guide. 

The modules are divided into several groups in the User’s Guides: The Timer 
module (page 29), the Lifecycle module (page 31), the modules used for 
inputting data (page 102), manipulation of variables (page 111), and other 
specialised modules (page 123). 

Rather than designing and building an elaborate model from the start, it is 
often better to start with a relatively simple model.  This can be tested in the 
Simulator, and experience gained with it can be used to adjust and elaborate it 
where required.   

It is important to be clear about the purpose of the model.  One possible and 
common use is as a simple development predictor.  A farmer may want to 
predict the time when the damaging late larval stage of a particular pest will be 

What order 
do I add the 

modules? 
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present, using a knowledge of the occurrence of adults from the previous 
generation.  In such a case, no mortality processes need to be modelled at all 
and in fact it may even be possible to lump several earlier stages together into 
one stage.  At the other end of the scale, if the model is required for optimising 
the timing and frequency of application of a mix of control methods, a very 
detailed model may be required, including economic relationships. 

Commonly, a model will be one of the tools that an ecologist will use in the 
study of a particular species or system.  The data that can be used to determine 
the shapes of functions and estimate their parameters will usually be scattered 
through the literature, or absent.  An initial simple model using any available 
data (with important gaps filled with “guesses”) can be a valuable adjunct to 
understanding the structure and behaviour of the system under study.  It is 
important that the data sources and quality, together with the assumptions, be 
rigorously documented (DYMEX provides “Comment” fields for this 
purpose).  The discrepancy between model output and field data can then be 
used to refine the model further by designing experiments to fill gaps or 
elucidate puzzling behaviour.  As confidence in the model grows, management 
events (such as pesticide treatment) can be added using Event modules.  At any 
time, the model can serve as a summary of the ecologist’s understanding of the 
system. 

The model parameters are used to “tune” the model, and their values are likely 
to change often as the model is built and then fitted against available data.  
Parameter ranges and “default” values are set in the Builder, but their actual 
values are normally stored in a Parameter File that is maintained by the 
Simulator.  During the model construction phase, it is strongly advisable to 
disable the Parameter File and just use the “default” values set in the Builder.  
This is done by setting the “Use Parameter Default” option in the Model 
Options dialog of the Simulator program (where it is accessed from the 
Current Model item in the Preferences menu). 

 

4.2 Timestep 

A major decision that needs to be made early in the model building cycle is the 
choice of timestep.  This will usually be determined by such factors as the 
briefest stage in a lifecycle being modelled.  For example, whereas a woody 
weed might be adequately modelled with a 7- or 30-day timestep, an insect 
whose eggs develop in three days would probably require a one-day timestep.  
For even shorter timescales, a segmented mode of operation is available.  In 
this mode, the daily timestep is divided into a number of segments that can be 
used to update variables at more frequent intervals than 1 day.  See also 
Process Rates and the Model Timestep (page 50) for a discussion of the effect 
of timestep on model processes and parameters.  See the Timer description on 
page 29 for instructions on how to change the timestep. 
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4.3 Sub-population Structure 

Normally, DYMEX models a single population (or, if multiple species are 
included in the model, a single community) of organisms.  This is useful for 
understanding the dynamics of these populations and can give valuable 
guidance for management and control.  In these single point models, dispersal 
from outside the model domain is dealt with using the immigration process, 
while emigration can be approximated as a mortality.  There are many 
situations where this approach is unsatisfactory and dispersal needs to be 
treated in more detail.  Version 3 of DYMEX includes a facility to divide the 
model domain into separate units, each of which can contain sub-populations 
(also referred to as “demes”)  of the organisms being modelled.  These sub-
populations can be given spatial coordinates and dispersal between them can 
be modelled explicitly.  Parameters can be different for the different sub-
populations.  For example, sub-populations could represent adjacent fields 
growing different crops, and different parameters could be used to characterize 
the suitability of the crops for the pest species being modelled.  Another way 
that sub-populations can be used in DYMEX is to model genetic phenomena 
such as the development of resistance to a chemical being applied for control.  
There are currently restrictions to this, in that only a 3-genotype model is 
possible.  The genetic sub-populations can be combined with spatial sub-
populations to model, for example, how development of resistance to a 
genetically modified crop such as BT–cotton might be slowed by planting of 
normal cotton. 

The sub-population structure of the model is modified via the Subpopulation 
structure menu item in the Model menu.  This opens the Subpopulation 
Structure dialog (Fig. 4-3).  The sub-population structure of the model is a 
fundamental property of the model and should be carefully considered before 
any changes are made.  Once a particular sub-population scheme is adopted, 
making changes later can involve a considerable amount of work in different 
parts of the model. 

The current sub-population representation is shown as a series of rectangles in 
the lower part of the dialog.  Subpopulations can be laid out in two dimensions 
(these do not need to represent an actual matrix of cells) as columns and rows.  
Often, for example, one dimension may represent a number of spatial units, 
while the other may represent genotypes.  Labels for the columns and rows 
may be specified, and these labels uniquely identify each subpopulation. 

 To create three sub-populations that represent genotypes in a 
population 

1. With the Model Components window active, click on the Model 
menu and select Subpopulation Structure.  This opens the 
Subpopulation Structure dialog (Fig. 4-3). 

2. In the Size edit box for Dimension 1, type 3 as the number of sub-
populations (or click on the upper small arrow to the left of the edit 
box until “3” is displayed). 
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3. The Genetic check-box will now be active.  Click on it to select 
genetic sub-populations.  The colour of the boxes will change to 
show that 3 different genotypes are present. 

4. In the Name box for Dimension 1, type in the desired name for this 
group of subpopulations (a suitable name in this case may be 
“Genotypes”) 

5. Click on the grey header above each subpopulation box and type in 
a name for the corresponding subpopulation.  For example, the 
three genotypes might be named “SS”, “SR” and “RR”. 

Fig. 4-3  The Subpopulation Structure dialog, showing the default, single-
population schema. 

 

 

4.4 Module Order 

The order of the modules is an important feature of a model.  Modules are 
executed in the order that they appear in the Component Window (referred to 
as the “Sort Order”).  Therefore if results produced by one module are used as 
input to another module; the data producer should generally be placed before 
the module that uses the data.  There will be cases where this is not possible 
(for example, a density dependent relationship in a lifecycle might use the total 
number of individuals output from the same lifecycle).  In cases such as those, 
the module using the values will be inputting values from the previous time 
step.  Fig. 4-4 illustrates an inappropriately ordered model.  Any modules that 
use “Daily Temperature Cycle” as input will use its value from the previous 
time step.  Note than a “cycle” consisting of all zero values will be used as 
input in the first time step. 
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The Timer module, which always occurs first, has a sort order of zero.  Every 
new module added to the model will have a sort order 10 greater than the 
previous module with the highest sort order. 

Fig. 4-4  An illustration of the results of an incorrect ordering of modules: in the 
first timestep the daily temperature cycle used in the lifecycle will be all zeros 
and in every timestep thereafter will have a daily temperature cycle from the 
previous timestep. 

 

In the top half of Fig. 4-4 the sort order is incorrect because the daily 
temperature cycle is used within the lifecycle to determine one or more 
processes, but is calculated after the lifecycle processes are evaluated.  Thus, 
the previous day’s temperatures are used as input to the lifecycle.  To correct 
this situation, the Daily Temperature Cycle module needs to be placed before 
the Lifecycle module (and after the module that produces its inputs, MetBase).  
To achieve this, the Daily Temperature Cycle sort order is changed from 80 to 
65, as illustrated.  Note that any number between 40 and 70 could have been 
used. 

Fig. 4-45  Two different sort orders; The first sort order was incorrect in this 
case because daily temperature was used in the lifecycle and should come 
before the lifecycle. 
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at each 
timestep

Order of 
Evaluation 

at each 
timestep



Building a Model 

23 

 To change the sort order of all other modules besides the 
lifecycle module 

1. Double click on the module to open it. 
2. Change the number in the Sort Order text box within the Options 

box on the right hand side of the module dialog box to the required 
value. 

The sort order of a Lifecycle module is changed from the Lifecycle Properties 
dialog (see Section 6). 

4.5 Naming Variables and Modules 

For future reference and good housekeeping, it is important to name the model, 
provide author and version details, and a description (or overview) of the 
model.  In addition, any assumptions made should be listed, either here, or in 
relevant comment boxes associated with modules, processes and parameters. 

 To edit the model description 

1. Select Details… from the Model menu.   

The Model Details dialog box allows the name of the model, the author, the 
version number of the model, and comments regarding the model to be set.  
Comments are not limited to the area shown in the dialog box and a large 
amount of information can be included in the comment box. 

It is important when naming modules, processes, functions and their 
parameters that certain rules are followed.  It is desirable that the names of 
modules, variables and parameters should be unique and meaningful to avoid 
later confusion. In most cases, the Builder will not allow the use of duplicate 
names for similar entities – for example, two modules with the same name are 
not permitted.  To avoid problems, it is also wise not to use DYMEX reserved 
terms such as “Module”, “Function”, “Parameter” or “Variable” as names.  
The word “run” must not be used as a name.  Do not use semicolons (;), quotes 
(“”) or commas (,) in names. 

4.6 Module Inputs 

Module inputs are set in the Module Inputs dialog.  This dialog is accessed in 
one of two ways.  Either double-click on the required module symbol in the 
Model Components window, and then click on the “Inputs” button in the 
Module window, or open the module using the small “+” symbol to the left of 
its bitmap, and double-click on the “Inputs” line.  A typical Module Inputs 
dialog is shown in Fig. 4-6. 

 

 

The 
importance of 

names! 
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Fig. 4-6 Module Inputs dialog, showing the linking action performed between 
two modules schematically on the right 

 

The list box on the left contains all the input variables for that module.  Any 
input that is already linked to a variable is preceded by the symbols “->”, and 
the currently selected input is highlighted.  A small window at the top right 
indicates the variable that the currently selected input is linked to.  To change 
the linked variable, click on the small button at the top right.  This opens up a 
list of all the variables in the model that are available for linking to the selected 
input.  The required variable is then selected from that list.  The diagram at the 
right of Fig. 4-6 shows the action performed schematically.  The module’s 
input is linked to the output variable of another module, thus linking the two 
modules (as indicated by the dotted line). 

Note that not all model output variables will be listed in the available variables.  
DYMEX has a simple variable type system, which recognises that some 
variables are not appropriate for a particular input.  This type system is not 
complete, however, and there will be some variables listed that would not be 
valid input variables for the selected input.   The user must take care to ensure 
that variables linked to an input are actually appropriate for that input. 

In a model that has multiple sub-populations, a module that does not make use 
of the sub-populations cannot use a demed variable as input.  The demed 
variables will not be listed in the available variables list for these modules.  
The converse is not true, i.e., modules that use sub-populations are able to use 
non-demed variables as input. 

If automatic linking is selected in the Options dialog, DYMEX will attempt to 
link inputs automatically where possible.  This is done by matching the names 
of available variables to the name of the inputs.  An informative message that 
indicates which links have been made is always displayed.  It is possible that a 
variable will be incorrectly linked, or that a suitable linking variable was 
unable to be determined.  Therefore it is important that the message is carefully 
examined and the correct links made manually if necessary. 
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Some module inputs have additional features, which will be described when 
describing the corresponding module. 

4.7 Module Outputs 

Each module has one or more outputs, which the user may choose to use or 
ignore.  The Module Outputs dialog is used to configure each of these outputs 
to the current model’s requirements (Fig. 4-7) for most modules (an exception 
is the Lifecycle module). 

Fig. 4-7 Module Outputs dialog 

 

A list window at the top left shows the outputs available from the module.  The 
symbols “+>” precede each of the outputs that were selected for use in this 
model.  The output that is currently being worked on is highlighted.  The 
button at the top right is used to select a currently unselected output, or to 
deselect a currently selected output (its label will change from “Select” to 
“Unselect” accordingly).  Double-clicking on the variable name in the list has 
the same effect as using this button.  The “Rename” button can be used to 
change the name of the variable.  The “New” button is only available with 
some types of modules (for example, QueryUser or DataFile), and is used to 
add a new output variable to the list. 

The window below the list allows a description for the currently selected 
variable to be provided.  This is useful in documenting the model, and to help 
the user of the model to understand the precise meaning of each output 
variable.  An abbreviated name (mnemonic) may also be provided for the 
variable, which will be used in such places as table column headers, where 
space is limited.  The Simulator will generate its own mnemonic if one is not 
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provided, but these tend to be somewhat cryptic.  The small box labelled 
“Private”  should be checked if the output variable is not to be made available 
for inclusion in tables, maps or graphs (i.e., it is for internal use in the model 
only).  This can be useful to reduce the clutter in large models with many 
variables. 

The three “Values” boxes are not available for all modules.  Where they are 
used, they allow limits to be set to the values of the output variables, and a 
default value to be provided if appropriate. 

4.8 Module Factors 

Some modules can be adjusted by setting the values of one or more 
parameters, or replacing these parameters by functions or processes (see 
Section 2.3, Functions, Processes and Parameters).  This is achieved using the 
Factors dialog (Fig. 4-8).  Note that Lifecycle processes do not use this dialog, 
but are set from the Lifecycle diagram. 

Fig. 4-8 Module Factors dialog 

 

The Factors dialog lists the module factors (“parameters”) in a window to the 
left.  Any of the factors that have already been set are followed by one of the 
words “Parameter”, “Function” or “Process” to indicate the type of factor 
chosen.  Three buttons on the right allow the selected factor to be set or edited 
as one of these factor types.  The dialogs corresponding to each of the three 
buttons are shown in Fig. 4-9.   Note that if either a process or function is used, 
each of the “parameters” within that process or function may in turn be 
represented by either a function or a parameter. 
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Fig. 4-9 Module Factors dialog, showing the dialogs corresponding to each type 
of factor 

 

4.9 Module Settings 

The Module Settings button results in a dialog that allows various settings 
pertaining to that module to be specified.  Each module will have a unique 
dialog, and these are described within that module’s documentation. 

4.10 Module Description 

A module description, consisting of a block of text, may be supplied.  In the 
Simulator, this description will be automatically labelled with the module’s 
name and appended to the general Model Description.  This is a good place to 
put any information about the module in general (for example, its purpose, a 
general overview of its operation, etc.).  More specific information should be 
placed into the appropriate comment fields within processes, functions and 
parameters.  

4.11 Parameter Set properties 

As described earlier, some modules can be adjusted by setting the values of 
one or more parameters.  For these modules, the set of all the parameters of the 
module is called the Parameter Set.  The properties of the Parameter Set are 
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specified using the Parameter Set Properties dialog, which is accessed from 
the Parameter Set button in the Options panel of the Module dialog (Fig. 
4-10).  Note that for many models, the default Parameter Set properties will be 
adequate.  In that case, the parameters are placed into the model’s Default 
Parameter File (which has the same path name as the model, but with 
extension .gmp).  Sometimes, however, it is convenient to place each 
Parameter Set into a separate, named file (an Auxiliary Parameter File)  so that 
it can be manipulated as a unit.  In the example shown in Fig. 4-10, a Soil 
Moisture model has its Parameter Set specified to exist as a separate file.  Thus 
a user of the model could perhaps provide parameter files corresponding to 
Sand, Loam and Clay soils. 

Fig. 4-10 Parameter Set Properties dialog, showing an Auxiliary Parameter File 
specified, with the Default Set indicated as valid and named “Average” 

 

 To change the properties of a module’s Parameter Set 

1. Click on the module’s Parameter Set button to open the Parameter 
Set Properties dialog. 

2. Check the Use separate (Auxiliary) File button if the parameters 
for this module are to be read from an Auxiliary Parameter File and 
continue to step 3. Otherwise, uncheck that button and click on Ok 
to exit the dialog. 

3. Specify the file extension that will be used for the module’s 
Parameter Files by typing it into the File Extension edit box. 

4. Specify a File Description that summarises what a Parameter Set 
represents.  For example, Soil Type is used for the above example. 

A parameter block in a file is linked to the correct module by a “block 
identifier” in the Parameter File that is normally the same as the module’s 
name.  Sometimes it is useful for two separate modules (with the same type 
and structure) to be able to share parameter files.  In that case, the sharing 
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modules must define and use a common “block identifier” (so that the 
parameter files can be recognised by either module). 

   
5. If required, change the module’s “block indentifier” from the default 

by specifying a new identifier in the Parameter Block Ident edit 
box.  Otherwise, leave the edit box empty. 

 
The Default Set of parameters is the set of parameter values specified in the 
Builder.  There may be circumstances where these parameter values, though 
valid individually, do not form a valid Parameter Set.  The lower panel in the 
Parameter Set Properties dialog allows the model constructor to specify how 
the Default Set is to be treated. 
 
6. If the Default Set is a valid set of parameters, check the Default Set 

is Valid button and provide a Name for the default set (such as 
Average Soil in our example). 

7. Click on Ok to return to the Module dialog. 
 
 

5. The Timer Module 

The Timer performs the timekeeping functions of the model.  When a new 
model is created in DYMEX, the Timer module is automatically added to the 
model.  The Timer is a mandatory component of the model and cannot be 
removed.   

Fig. 5-1  The Timer module Input and Output dialog boxes. 

 

The Timer module uses a single, optional, input variable: the “Equilibrium 
Variable”.  This variable is used during a run of the model within the 
Simulator to determine when the run has reached an equilibrium condition.  If 
the capability to do equilibrium runs is required in the model, the Equilibrium 
Variable input should be linked to the required variable by using the drop 
down list.  In Fig. 5-1, the Equilibrium Variable is linked to Adult Density.  

What is the 
Timer? 

Input Variable 
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The equilibrium conditions are set within the Simulator and the Simulator 
guide has a full description on how to set the conditions. 

There are four output variables available from the Timer module: Days Since 
Start, Day of Year, Simulation Date and Time of Day.  Days Since Start is 
the number of days since the start of the simulation.  Day of Year is the 
number of days that have passed since the start of the current year (i.e., from, 
and including, January 1 to the current simulation date) in the simulation, and 
Simulation Date is the date currently being simulated.  The Time of Day 
output gives the number of hours that have passed since the start of the current 
day in the simulation.  Normally, this variable would not be selected, as it 
would always return 0.  However, if a segmented timestep mode is used, the 
variable may be useful.   

The choice of output variable is determined by what other modules are 
required for the model.  Note that it is not necessary to make a choice at this 
point and output variables can be selected or unselected later.  In a simple 
model, it may not be necessary to select any Timer output variables.  
Simulation Date is useful as an output if you are using a Datafile or Metbase 
module, as it allows synchronization and checking of the data file dates.  It is 
required if you want to report times in model output as dates.  Days Since 
Start is the basic time reference used within DYMEX, but may not be required 
as output very often.  However, at least one of the two variables (Days Since 
Start or Simulation Date) should always be selected for output to act as a time-
based x-variable for charts.  The Day of Year variable is useful if simulations 
are to be run over multiple years and certain actions (for example, management 
events) are to be applied at the same time each year. 

Fig. 5-2  The Timer module’s Setup dialog box. 

 

Currently there are only three basic timesteps available for a DYMEX model 
(1, 7 or 30 days, see Fig. 5-2).  The selected timestep is used throughout the 
simulation.  However, if the 1-day timestep is selected, it is possible to break 
the daily timestep into a number of segments, which can then be used to update 
selected modules more frequently than daily.  This is termed the ‘segmented 
timestep’ mode.  The choice of timestep will have no effect on the operation of 

Output 
Variables 

Which Output 
Variables 

should I use? 

Setup 
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most modules.  Among the exceptions are the file readers (DataFile and 
Metbase) and the Lifecycle modules.  In the Metbase module, for example, if 
you are using daily rainfall data and the model has a seven-day timestep, 
DYMEX will calculate the total rainfall for the week and use that figure in the 
model.  In the Lifecycle module, process rate parameters will almost certainly 
need to be different in equivalent models with daily and weekly or monthly 
timesteps. 

If a daily timestep is chosen for the model, this timestep may be divided into a 
number of segments for updating selected modules more frequently than at the 
daily interval.  This allows effective timesteps as short as 1 hour to be used. 

If either a weekly or monthly timestep is chosen, the Use Exact Years option 
becomes available.  If selected, the timesteps are updated in such a way that 
there are exactly 52 weeks in a year for the weekly timestep, and 12 months in 
a year for the monthly timesteps.  This is achieved by adding days to the 
simulation where required.  For example, a 7-day timestep would normally 
give 7 × 52 = 364 days in a 52 week period.  To make that period an exact 
year, DYMEX makes the first week an 8-day week (by incrementing the first 3 
Timer output variables by 8 days after the first timestep of each year).  If the 
current year happens to be a leap year, the last week in February is also made 
an 8-day week.  Similarly, five (or 6, in the case of a leap year) 31-day months 
are used if Use Exact Years is selected for a monthly timestep. 

See Process Rates and the Model Timestep, page 50 for more information on 
the effect of changing the timestep on model processes. 

 

6. The Lifecycle Module 

A number of intrinsic and extrinsic factors affect the population dynamics of 
any species.  Different species have different life history characteristics such as 
developmental characteristics, how and when mortality factors operate and the 
timing of reproduction.  The Lifecycle module is a flexible component that can 
be adjusted to simulate a wide range of species.  In DYMEX, a Lifecycle 
consists of one or more Lifestages.  Multiple Lifecycle modules may be 
included in a DYMEX model, and these different lifecycles can interact. 

Lifecycles do not need to be linear, but may have branches and nested stages.  
This allows complex phenomena such as a diapause stage in an insect, cyclical 
dormancy in a seed, or the flowering in a plant to be modelled conveniently. 

Note that a Lifecycle module does not have to be a complete lifecycle.  For 
example, the module could be used to model a rice crop from planting of 
seedlings to harvesting. 

A Lifestage contains all the individuals in a simulation that are at a particular 
stage of development, whether development is measured in terms of 
chronological age, physiological age, size or some other measure.  DYMEX is 

What is the 
Lifecycle 
module? 

 

What is a 
Lifestage? 
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well suited for modelling insects, which do not have continuous development.  
The cuticle, which makes up the exoskeleton of insects, prevents continuous 
growth.  A moult has to occur at intervals to form a new cuticle of larger 
surface area, and intervals between moults form a natural division of the 
lifecycle into stages.   

Lifestages in DYMEX can also be used to model organisms with continuous 
development patterns.  Multiple lifestages can be defined in many other 
organisms, e.g. frogs (eggs, tadpoles, adults), plants (seeds, seedlings, 
juveniles, adults, flowers, fruits) and so forth. 

The identification of meaningful stages depends on the purpose or aims of the 
modelling exercise and the biology of the organism.  It is sometimes possible 
to group lifestages.  If parameters for successive “natural” stages are the same 
or little detailed data is available on individual stages, then a single Lifestage 
could be used to model a number of successive actual stages.  For example, 
two or more larval stages (instars) in an insect species could be grouped to 
form say an ‘immature’ stage.  DYMEX makes it relatively easy to insert 
lifestages later, so in many cases it may be convenient to start with grouped 
stages early in model construction, and to divide them into separate stages later 
if it is found to be necessary. 

In the current version of DYMEX, all continuous processes within a lifestage, 
occur at the same time.  If a feature of that cohort (e.g. Physiological Age, 
Number, etc.) drives a process within a cohort the value will generally be 
obtained from the previous timestep (see however, Immediate Update Cohort 
Variables, Section 6.18).  Transfer always occurs once all other processes have 
occurred within the lifestage.  Establishment processes occur before any other 
processes have occurred within the lifestage, while Exit processes occur 
during stage transfer.  In most cases, it will not matter whether a process 
occurs as on exit from one lifestage, or on entry to the next lifestage.  Where it 
becomes important is where there are branching lifecycles with two stage 
transfers entering or leaving a lifestage.  In these circumstances, the modeller 
must decide when the process needs to be updated and place the process 
accordingly.  Misplacing the process may result in the process being triggered 
too frequently or infrequently, or to the wrong cohorts. 

 To add a Lifecycle Module 

1. Select Model menu, choose Add Module… and choose to add a 
Lifecycle module.   

This creates a new Lifecycle module containing a single Lifestage, and 
displays it in the Lifecycle Window.  A new menu (“Lifecycle”) with choices 
relating to the lifecycle is now available on the menu bar. 

2. Select the Lifecycle menu and choose “Properties…” to open the 
Lifecycle Properties dialog (Fig. 6-1). 

3. Type a name for the lifecycle into the Name edit box.  The name 
should describe the species being represented (eg, “Brown 
Planthopper”). 

How many 
stages are 

needed? 

Ordering 
processes 
within the 
lifestage 

Establishment 
and Exit 

processes  
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4. Choose the method to be used to update the Chronological Age 
Cohort Property. 

 
By default, Chronological Age (see Section 6.4) is updated in units of days in 
models created with Version 2 or above of DYMEX, while models created 
with Version 1 update this Cohort Property in units of timesteps (of course, 
these amount to the same for models with a daily timestep).  A model created 
with Version 1 will still have the Chronological Age updated in units of 
timesteps, but this can be changed in this dialog. 

 
5. Set the Sort Order Constant to a value that places the module into 

the correct position in the list of modules. 
6. If factors will be defined for the lifecycle, specify the number of 

factors that will be used in the Number of Lifecycle Factors box 
(see Section 6.22). 

7. If the model population is divided into sub-populations, and the 
lifecycle is to use those subpopulations, the Use Subpopulations 
box must be checked. 

8. If a segmented timestep is being used, check the Use Segments 
box if the Lifecycle module is to be updated at smaller than daily 
intervals. 

9. Click Ok to exit the Lifecycle Properties dialog. 
10. Select the “Description…” menu item from the Lifecycle menu and 

provide a description of the lifecycle and its properties. 
 

Fig. 6-1  The Lifecycle Properties dialog. 

 

In the following sections, the individual components of lifestages are discussed 
in detail, with particular reference to Lifestage types, Cohorts (Section 6.4), 
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Environments (Section 6.6) and Processes (Section 6.7).  The various dialogs 
that are used for specifying processes are then dealt with in Sections 6.10 to 
6.11.  The uses of each process type are then discussed in detail in Section 6.12 
(The Development Process), 6.13 (The Reproduction Process), 6.14 (The 
Mortality Process), 6.15 (The Transfer Process) and 6.18 (User-defined 
Cohort Variable Processes), with examples from vertebrates, plants and 
insects. 

 

6.1 The Lifestage and its components 

The Lifestage is shown in the Lifecycle Window as a rectangular box, 
containing the lifecycle components (Fig. 6-2). If the lifecycle being depicted 
contains more than one lifestage, a light-red border surrounds the currently 
selected stage.  Selecting menu-items that apply to a lifestage such as 
“Development…” will refer to the selected stage. 

Name of Lifestage:  A label that defines the stage, e.g. “Seed”, ”Egg”, 
“Juvenile”, and is included in the default names that DYMEX gives to 
output variables (see Naming Variables and Modules, page 19).  Note that 
the blue colour of the Name panel is replaced by red for stages that contain 
a reproductive process. 

Fig. 6-2  An example lifestage in a lifecycle with labelled process buttons. 

 

Processes:  The processes being used in a particular stage are represented by 
icons on the grey Process Bar.  The Stage Transfer process (and 
Reproductive process in reproductive stages) are always depicted, but are 
marked with a red cross if they have not yet been specified.  If incompletely 
specified processes are present, the Process Bar will be coloured red and an 
“incomplete” icon will be displayed.  Fig. 6-14 (page 50) shows all the 
process buttons that may be visible. 

Output Variables:  These are the variables that will contain the results of the 
simulation run for that stage.  Typical output variables might include Total 

What’s in a 
lifestage? 
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Number (Population), Development Time, Average Size, etc.  The lifestage 
output variables are obtained by combining the outputs from individual 
cohorts in the stage (see Lifestage Output Variables, page 99). 

Other lifestage properties:  This button is used to set up various lifestage 
properties.  Here a lifestage can be made an Endostage, and the resource 
variable can be set.  The resource variable is the denominator used in 
density calculations for the lifestage, and could include such variables as 
paddock size or plant biomass. 

Subpopulation indicator:  This icon, if present, indicates that the lifestage 
makes use of the models sub-population structure (i.e., the individuals that 
comprise the life stage may be split among several sub-populations). 

Stage Link:  The large blue arrow leaving the lifestage is the “Transfer Link” 
to the next lifestage (i.e., it represents individuals graduating to the next 
lifestage).  In contrast, the “Reproductive Link” (a red line) represents the 
generation of new individuals via reproduction.  Note that functions that 
affect the properties of the stage links can be accessed by left-clicking on 
the appropriate link arrow and selecting the function from the popup menu. 

Environment:  In the present version of DYMEX, the Environment is used as 
a device for grouping variables that are available in the same situations 
placed into the same environment.  Note that the environment is not 
accessible from the Lifecycle diagram but must be selected from the menu 
(see What is an Environment in DYMEX? page 46). 

A new lifestage may be added below or above an existing lifestage by left-
clicking on the part of the lifestage not taken up by icons and  selecting “Add 
Stage After” or “Add Stage Before”, respectively from the resulting popup 
menu.  These Lifestage menu may also be used for this with the additional 
ability to create new lifecycle branches (see below).  If no more lifestages are 
needed the processes associated with each lifestage can now be edited.  

The lifecycle pathway is completed by left-clicking on the lifestage and 
selecting Create link from the resulting popup menu.  A sub-menu then opens 
out and the required reproductive link can be selected from those listed under 
the “Reproductive Links” menu heading. 

 

6.2 Lifecycle and Lifestage types  

Three different lifestage types are the basic components from which different 
lifecycles in DYMEX can be created.  A Normal lifestage does not contain a 
reproductive link out of the stage, and is not contained within another stage.  It 
is shown as a blue box in the lifecycle diagram.  A Reproductive lifestage has 
a reproductive link exiting out of it, and is distinguished by its red colour.  An 
Endostage is a stage that is contained wholly within another stage and is 
distinguished by its light-blue colour. 
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Fig. 6-3  Three different lifecycles in DYMEX.  (a) is a simple lifecycle, (b) shows 
a branched lifecycle, while (c) uses “endostages” to model the reproductive 
phenology in a plant 

 

 

Fig. 6-3 shows three different lifecycles constructed using these components.  
The first lifecycle (a) is simple, with two Normal stages followed by a 
Reproductive stage.  The second lifecycle (b) uses a lifestage branch to 
simulate diapause (i.e., individuals from the “Immature” stage may move to 
either the “Larval Diapause” stage or the “Adult (Quiescent)” stage).  The final 
lifecycle (c) uses two Endostages to simulate the onset of flowering and seed 
pod development in a plant. 

6.2.1 Branching Lifestages 

Branching (Fig. 6-3b), which is the use of more than one Stage Transfer exit  
per stage, allows some very complicated lifecycles to be created in DYMEX.  
There are some restrictions placed on the use of branches.  No more than two 
standard (non-reproductive) links may exit from any one lifestage.  Two 
branches leaving a stage may not terminate at the same destination stage (this 
limitation includes reproductive links – i.e., it is not permitted to have both a 
standard link and a reproductive link connecting two lifestages). 

 To create a new stage as an alternative exit from a stage 

1. Select the lifestage from which the branch will exit by clicking on its 
blue or red area with the mouse. 
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2.  From the Lifecycle menu, choose Add Stage After….  From the 
resulting dialog, select the option “Current Stage  NEW STAGE” 
(The alternative option would insert the new stage into the existing 
stage link. 

 

 To create a new link between two existing stages 

1. Select the lifestage from which the Stage Link will exit by clicking on 
its blue (or red for reproductive stages) area with the mouse. 

2.  From the Lifecycle menu, choose Create new Stage Link….  
Make sure the correct source lifestage is selected and select the 
destination lifestage from the list.  Click on Ok to close the dialog. 

 
The lifecycle window will then show the new Stage Link between the stages.  
Note that a convoluted lifecycle diagram can often be simplified by 
rearranging the lifestages in the diagram (which, of course, does not change 
their logical position within the lifecycle).  This is done using the 
“Lifecycle|Re-order stages…” menu item.   
 

6.2.2 Endostages 

As indicated earlier, an Endostage is a lifestage that is contained wholly 
within another stage (the “Container” stage), this being shown explicitly in the 
Lifecycle Diagram.  Thus Endostages are mostly suited for simulating the 
production of flowers or buds on a plant (via the reproductive process), and the 
development of these structures towards independence (for example, seeds).  
There are also cases where Endostages may be useful for simulating progeny 
development in animals where there is in vivio competition such as in tiger 
sharks.  Fig. 6-3c shows the way that Endostages are typically used in 
DYMEX.  The critical property of an Endostage is that it is a part of its 
Container stage in the sense that if (for example) the adult plant is killed, so are 
its flowers, buds and pods which are insufficiently developed to be capable of 
independent survival.  However, the reverse is not true.  By using an 
Endostage it is possible to allow environmental conditions to act on progeny 
independently of the parent e.g. frost or drought mortality, whilst also 
simulating the effects of parent processes (e.g., mortality) on the progeny. 

In this version of DYMEX, only reproductive stages can be Container stages 
and their Endostages must immediately follow via the reproductive link (both 
logically and as depicted in the Lifecycle window).  Note that the use of 
Endostages can result in a large increase in execution time for a model, due to 
the fact that during model execution, Endostages tend to generate many more 
cohorts than other types of stages.  The reasons for this are discussed in detail 
in Section 5 of the Simulator User’s Guide.  In all other ways, an Endostage is 
treated the same as any other lifestage. 

 To create an Endostage 

1. Create the required lifestage in the usual way. 
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2.  Ensure that the selected stage is below the stage that will become 
its Container stage (the reproductive stage) in the Lifecycle window 
representation.  Use the “Lifecycle|Re-order stages…” menu item 
to reorder the stages as required. 

3. Click on the “Other lifestage properties” icon ( ) and from the 
“Container Lifestage” list near the bottom of the resulting dialog, 
select the appropriate Container Lifestage (Fig. 6-4).  Note that 
only those lifestages that are valid candidates as Container of the 
Endostage are listed. 

 

Fig. 6-4  Selecting the Container Lifestage for an Endostage 

 
 

Lifestages represent various phases within a lifecycle of the modelled 
organism.  A lifestage can be defined as a group of individuals, all of which are 
affected by the same processes during a particular period of their life.  Annual 
plants are an example of a simple life history, which can often be modelled 
with as few as two lifestages: seeds and plants.  Similarly, vertebrates may be 
modelled as juveniles and adults.  If different processes affect adults that are 
reproducing, another lifestage can be added.  Note: in this conceptual model, 
once a non-reproducing adult becomes a reproducing adult it cannot revert to 
being a non-reproducing adult (Fig. 6-5) without the addition of a branching 
pathway. 

Lifestages do not necessarily have to be used to model obvious discrete 
‘stages’ within lifecycles but can also be used to model ‘phases’ within actual 
stages.  The second lifecycle in Fig. 6-5 is an example of where another 
lifestage is used to model such a ‘phase’ within a lifestage.  As another 
example, a lifestage could be used to model infection where the individuals go 
to another lifestage when they become infected. 
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Fig. 6-5  An example of two lifestages modelled within DYMEX: the first being a 
very simple model while the second is an extension of the first model where the 
reproducing adults are affected by different processes. 

 

 

6.3 The Lifestage Window 

The Lifestage window displays all of the processes for a single lifestage in a 
graphical window (Fig. 6-6).  Any process can have factors added, changed or 
deleted, its combination rule adjusted and comments added from this one 
place.  Much of the work of creating and editing a model will be done from 
within the lifestage window. 

Processes are arranged within the lifestage window in a spreadsheet-like grid 
arrangement, with similar types of processes grouped together under one 
Process Header.  For example, several types of mortality processes (i.e., 
processes affecting the Cohort variable Number) are available, and these are all 
grouped together under the heading “Number {Mortality}”.  

Let us examine a typical Lifestage window (Fig. 6-6).  The name of the 
lifestage is indicated in the window’s caption (in this case, Larva – 1).  The 
first thing to note is that a number of broad, green, labelled bars divide the 
window into a several sections.  Each of these bars is a Process Header, with 
its label indicating the process that is displayed under that header.  In the 
example, The Immigration, Mix Timing and Dispersal/Mixing processes are 
not used at all in this lifestage.  A glance at the Number {Mortality} section 
shows that both “establishment” and “continuous” mortality process are being 
used in the lifestage, while the “exit” and “post-mix” mortality processes are 
not being used.  The “establishment” mortality has two components (factors), 
one of which is a “Direct” function (or variable), the other a parameter.  The 
“continuous” mortality has four factors, all functional in nature. 
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 Fig. 6-6  A Lifestage window. 

 

Each process factor is shown by a panel within the corresponding “Process 
Components” row.  If more than one factor is present, each factor panel 
contains the factor label (e.g., “r1”, “r2”, etc) at the top left.  Four different 
types of factor panels may be present, as shown in (Fig. 6-7): 

Fig. 6-7  A “Process Components” row within the Lifestage window, showing 
the four different types of factor panel. 

 

1. Function panel 

The function panel is shown for a function process component.  It 
illustrates the function shape being used, and shows the driving variable on 
the x-axis of the graphic.  Note that depending on the choice of parameter 
values, the functional shape may not be an exact representation of the 
chosen functional shape. 
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2. Parameter panel 

The parameter panel is shown for factors that are parameters.  It indicates 
the name of the parameter, as well as its default value (or the centre of the 
allowed range if no default value is specified). 

3. Variable panel 

The variable panel is shown for factors that use the Direct function (i.e., 
the factor’s value is the same as the value of the driving variable).  The 
name of the driving variable is indicated in the panel. 

4. Process panel 

A process panel is depicted if the corresponding factor is itself a process.  
The name of the process is shown in the panel, and the number of factors 
that it consists of is indicated at the bottom of the panel. 

Incompletely specified factors are shown by an “incomplete” indicator placed 
on the corresponding panel, as shown in the second establishment mortality 
factor in Fig. 6-6. 

Factors whose values will be different for different sub-populations are 
indicated using a “sub-population” indicator (see factor “r4” in the continuous 
mortality process of Fig. 6-6). 

Processes that have more than one factor (or single-factor processes that use a 
user-defined Combination Rule) have their combination rule shown in the 
right-hand panel of the process heading.  The factor labels in the combination 
rule (e.g., r1, r2, etc) correspond to the factor labels shown in the factor panels. 

6.3.1 Lifestage Window Operations 

Clicking on different parts of the lifestage window will produce corresponding 
actions.  This section describes the actions that the user can perform from the 
Lifestage window. 

1. Process Header 

When the left side of a “Process Header” bar is clicked, the resulting action 
depends on whether or not the corresponding process (or processes) is 
associated with updating the values of Cohort Variables.  For processes 
that are not directly associated with a Cohort Variable, a menu such as the 
one shown at the left is displayed.  It allows a new factor to be added, with 
a choice of function, parameter or process being available.  The new factor 
will be added after any previously existing factors for this process. The 
“Change Name” and Add Description” options will only be available if the 
process contains factors.  They allow the name of the process to be 
changed and a description for the process to be provided.  The “Paste” 
option will be available only if another factor has previously been copied 
or cut. 

 

 

 



The Lifecycle Module 

42 

When the Process Header bar of a process group that updates the value of a 
Cohort Variable (other than “Number”) is clicked, one of two things will 
happen.  (1) If the process group does not yet contain any factors (i.e., none 
of its component processes are used), the menu shown at the right is 
displayed.  Selecting “Cohort Variable Details” will open the Cohort 
Variable dialog (see Section 6.18), where details of the corresponding 
Cohort Variable can be examined or changed.  Selecting “Hide Cohort 
Variable” will remove the whole section dealing with that Cohort variable 
from the lifestage window for this lifestage.  This is useful to avoid clutter 
in the Lifestage Window in cases where a Cohort Variable does not require 
updating in a particular stage.  Note that this action can only be undone 
from within the Lifestage Settings dialog by un-checking the No 
Processes box in the Cohort Properties (local settings) panel.  (2) If the 
process group already contains a process with one or more factors, clicking 
on its Process Header bar just displays the “Cohort Variable” dialog, from 
which details of the corresponding Cohort Variable can be examined or 
changed. 

2. Process sub-header or name panel  

Clicking on either a process sub-header or process name panel displays a 
popup menu like that shown on the left.  It allows a new factor to be added, 
with a choice of function, parameter or process being available.  The new 
factor will be added after any previously existing factors for this process. 
The “Change Name” and Add Description” options will only be available 
if the process already contains factors.  They allow the name of the process 
to be changed and a description for the process to be provided.  The 
“Paste” option will be available only if another factor has previously been 
copied or cut.  The “Cohort Grouping” choice is shown only for the 
Dispersal/Mixing process.  It is used to specify how cohorts are combined 
after dispersal.  Use of this option is described in Section 6.17.3 (Dispersal 
and Cohort Grouping). 

3. Process Factor panel 

Clicking on a Process Factor panel displays a popup menu similar to the 
one shown on the left.  Selecting the first item allows the factor (function, 
parameter or process) to be changed.  The factor can be deleted from the 
process by selecting the second menu choice.  Note that this will move all 
the higher factors one position down in the factor list (i.e., if “r2” is 
deleted, “r3” becomes “r2”, etc).  If the factor is a function, the third and 
fourth menu items allow it to be replaced by a parameter or process, 
respectively.  Equivalent options are shown if the factor is a parameter or 
process.  The “Copy” or “Cut” selections can be used to place a copy of 
this factor into a special buffer, from which it can then be inserted 
elsewhere in the lifecycle using the “Paste” selection.  Note that when 
“Paste” is used, the factor is placed immediately to the right of the factor 
from whose popup menu the “Paste” command was selected. 
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4. Combination Rule panel 

A left-click on the Combination Rule panel will display the Combination 
Rule dialog (see The Combination Rule, page 57).  Once a combination 
rule is set, it will subsequently be displayed in the panel.  Incorrect 
combination rules are indicated by the phrase “[Invalid]” in the 
Combination Rule panel. 

5. Process Description panel 

The Process Description panel is only displayed if a description has been 
provided for the process and shows the process description.  The 
description can be edited by clicking on the panel. 

 

6.4 What is a Cohort in DYMEX? 

DYMEX does not model the fate of individual organisms.  Individuals are 
grouped into assemblages termed Cohorts, where each cohort consists of a 
number of individuals that belong to the same lifestage, occupy the same 
spatial unit, and share the same properties, like the time (day/week) they 
entered a stage.  Cohorts are the basic units that are modelled in a DYMEX 
lifecycle.  An example of a cohort would be all the juveniles born on a 
particular day during the simulation.  All the individuals within a cohort 
experience the same conditions during the course of a simulation.  

Table 6-1 Cohort Properties and their associated processes 

Cohort Property Associated Processes 

Number Mortality 

Stage Transfer 

Dispersal 

Chronological Age Intrinsic 

Physiological Age Development, Aging, Maturation 

Residual Fecundity Fecundity 

Progeny Production 

Size Growth 

 

Cohorts have a number of properties (Cohort Properties) that are shared by all 
the individuals in the cohort.  A list of these properties is provided in Table 
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6-1.  For example, Number contains the current number of individuals in the 
cohort, while Physiological Age contains their current state of development.  
There is no user-adjustable process associated with the Chronological Age 
property, which always reflects either the number of days or timesteps since 
the cohort was created, depending on the settings in the Lifecycle Properties 
dialog.  Note that models created in Version 1 of DYMEX update the 
Chronological Age in timesteps, while the default for models created in 
Version 2 is days.  The Residual Fecundity Cohort Property is only present in 
reproductive stages.  Note that Size is not a pre-defined Cohort Property, but 
must be defined by the modeller if it is required.  Up to 32 of these user-
defined Cohort Properties may be defined for each lifecycle.  Section 6.18 
describes how to create or modify a user-defined Cohort Property. 

During a simulation, each lifestage may contain many cohorts.  The total 
number of individuals in a lifestage is the total of the Number Cohort Property 
for all the cohorts in that stage. Figure 6-8 simply illustrates how individuals in 
a cohort are ‘transported’ through a lifestage until they either die or are 
transferred to another lifestage where they form a new cohort.  The full glass 
represents the full complement of individuals that the cohort is created with.  
These are depleted by mortality as development moves the cohort along the 
“conveyor belt”.  When development is complete, and if any individuals 
remain in the cohort, they are used to form a new cohort within the next stage. 

It is important to note that any individual can die at any time along the 
‘conveyor belt’ of cohort development. 

Figure 6-8 A simplified diagram of the function of cohorts in DYMEX. 

 

Say we have a model containing a multi-stage insect lifecycle, the first two 
stages of which are “Juvenile” and “Adult”.  We might initialise a simulation 
by introducing 100 juveniles into the simulation on day 1.  These 100 juveniles 
would form a cohort.  During the course of the simulation, the Development 
process chosen by the user acts on this cohort, increasing its Physiological 
Age.  At any time step, each member of the cohort has the same Physiological 
Age.  If a Mortality process has been chosen to apply to the “Juvenile” stage, 
this mortality process acts on the cohort to reduce its numbers from the initial 

 

How do 
cohorts work 

in practice? 
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100.  If mortality is such that the number of individuals in the cohort is reduced 
to 0 before they are ready to move to the next stage, the cohort is automatically 
removed from the simulation.  If the mortality is lower, the cohort may persist 
long enough for its members to become eligible to move on to the next 
lifestage (as determined by the appropriate Stage Transfer Process).  In this 
case, a proportion of individuals from this cohort (determined by the Stage 
Transfer Process) graduate to the next stage (“Adult”), where they are 
contribute to create a new cohort.  This new cohort will consist of all the new 
adults for that time step, recruited from a number of different juvenile cohorts, 
with early transfer from later juvenile cohorts added to late transfer from 
earlier juvenile cohorts.  Similarly, when the reproduction process creates new 
juvenile individuals from a number of different adult cohorts during a 
particular time step, these new individuals are placed into just a single juvenile 
cohort (This behaviour can be changed so that cohorts are transferred between 
lifestages – see Cohort and Cohort Variable Transfer, page 81). 

Below is another example of cohort formation in a population of trees (Fig. 
6-9).  There are two lifestages in this example, adults and seedlings.  In the 
first time step, the one adult tree produces two seedlings in the second time 
step, which form cohort B.  In the second time step one of the seedlings dies 
and the other one receives enough nutrients to develop to an adult (Cohort C).  
In addition, in the second time step the adult tree (Cohort A) produces two 
seedlings (Cohort E).  In the third time step, the Cohort E seedlings mature to 
adults (Cohort F), while the Cohort C adults produce another cohort of 
seedlings (D). 

Fig. 6-9  An example of cohort formation in a population of trees. 
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The cohort concept is central to the operation of the DYMEX Lifecycle 
module.  In practice we have found that many problems in interpreting 
DYMEX results are due to a lack of understanding of how cohorts work. 

6.5 Cohorts and sub-populations 

In a lifecycle model that uses sub-populations, separate cohorts are present for 
each sub-population.  New cohorts created from individuals transferring to the 
next stage include only those individuals from the same sub-population.  
Individuals can only be transferred between sub-populations by the Dispersal 
(Mixing) processes and the Genetic Mixing process. 

 

6.6 What is an Environment in DYMEX? 

In DYMEX, an Environment groups variables into sets.  This can simplify the 
construction of a complex model by restricting the available variables when 
selecting driving variables for processes.  Below in Fig. 6-10 is an example of 
four environments (Global, Canopy, Fruit & Soil).  Each lifestage resides 
within a particular environment.  By default a lifestage is assigned to the 
Global environment, which contains all variables.   

In simple models, you can probably ignore the environments feature (i.e. use 
the default Global environments for all lifestages) 

The example below is an example of the environments that a fruitfly will 
experience during its lifespan: the larvae live within the fruit, the pupae within 
the soil and the adults within the canopy. 

Fig. 6-10  Example environments on a tree. 
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Soil
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Table 6-2  Example variables associated with the four environments listed in 
Fig. 6-10. 

GLOBAL SOIL FRUIT CANOPY 

Air Temp.    

Rainfall    

Soil Moisture    

Humidity    

Evaporation    

Soil Temp.    

Fruit Type    

Ripeness    

 

In Table 6-2 is an example of how a series of model variables could be 
grouped into four environments.  Air Temperature and Evaporation is available 
from two environments while the other variables are only available from a 
single environment. 

 To add a new environment 

1. Go to the Component Window Model menu.   
2. Selecting the Environments… menu item will make the 

Environments dialog box appear.   
3. To create, edit or delete environments left click on the appropriate 

buttons within the Names box. 
 

Fig. 6-11  Environments dialog box. 
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4. To create an environment left click on the Add button and the 
environment dialog box will appear.   

5. Give a name to the environment within the small box just below the 
top edge of the Environment box (Fig. 6-12).   

6. Variables can be added to the environment by either double clicking 
the variable selected or left-clicking the Add to Environment 
button.   

If a lifestage is assigned to an environment other than Global, only those 
Variables within that environment will be available to the lifestage. 

 To remove a selected variable from an environment 

1. Select variable within the variable list box on the left and left click 
the Remove button. 

Fig. 6-12  Environment dialog box with open Add dialog box. 

 

It must be emphasised that multiple environments are not necessary in simple 
models.  If your model is becoming so large that the number of variables is 
becoming confusing, then creating multiple environments can be useful.  In a 
future version of DYMEX, environments will be used more extensively in 
conjunction with spatial modelling. 

Once the number of lifestages needed has been decided, the lifestages have 
been added and their environments specified, the various processes of the 
lifestages can be edited. 

 

 

 

Continuing... 
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6.7 What is a Lifestage Process? 

A lifestage process in DYMEX is the mechanism that changes the value of a 
Cohort Property.  For example, the process of Development increases the 
value of the Physiological Age at each timestep, while a Mortality process 
removes individuals from the cohort (i.e. it decreases the value of the cohort 
property called Number).  Some cohort properties may have more than one 
process acting on them.  A typical example is the Number of individuals in the 
cohort.  Mortality, Dispersal and Stage Transfer processes all affect this 
property. 

The description of processes is fundamental to the construction of a DYMEX 
model (or any other type of model, for that matter).  Once the basic lifecycle 
structure has been determined, we have generated a static picture of our 
system.  By the addition of the processes, which allow individuals to grow, die 
and progress through the lifestages in the lifecycle, we add the dynamic aspects 
of the model. 

Since processes are so fundamental to the operation of a DYMEX model, a 
considerable amount of flexibility has been built into them.  It is important to 
understand the structure of the process in order to build a useful model. 

A Mortality process might have a constant value of 0.1, thus reducing the 
number of individuals in the cohort by 10% in each timestep.  Over a number 
of timesteps, the proportion of individuals surviving from the original number 
that formed the cohort would be as in Fig. 6-13. 

Fig. 6-13  An example of a mortality process. 

 

The precise way in which the process value changes the corresponding Cohort 
Property can be described when the process is specified.  

Each process consists of one or more Factors (termed Process Components), 
which are evaluated separately, and then combined using the Combination 
Rule to arrive at a final value.  Process Factors can be either static Model 
Parameters (which do not change their value during a simulation run), or 
dynamic factors, either Functions or other Processes (see Functions, Processes 
and Parameters, page 11). 
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Fig. 6-14 Process buttons in the Lifecycle module. 

 

 

The processes used in a particular lifestage in DYMEX can be seen within the 
grey region of the Lifestage boxes and may include the pre-defined processes: 
immigration, development, mortality, dispersal, genetic mixing, 
reproduction, and stage transfer and the user-defined cohort variable 
processes.  The Reproduction and Genetic Mixing processes are only used in 
reproductive stages.  Note that most of these processes buttons only appear if 
the corresponding processes are actually used in the lifestage. 

 To edit a Lifestage process 

1. Left click the process buttons panel in the lifestage graphic (Fig. 
6-2).   

2. Find the process in the Lifestage Window and add or edit factors to 
the process as required. 

 

Note that when a process button appears with a red cross on it, that process is 
required for the lifestage but has not as yet been sufficiently specified. 

The components of all processes are set in the same way.  Parameters, 
functions or processes can be used as components of a process and if more 
than one factor is chosen then a combination method must be selected (see The 
Combination Rule, page 57). 

Note that the output (value) of a process is a rate in units of /timestep (per day, 
week or month, for daily, weekly or monthly models, respectively). 

6.7.1 Process Rates and the Model Timestep 

Equivalent models that differ only in timestep would need their process rates to 
be different to give the same results.  The relationship between the equivalent 
process rates would vary depending how the processes are applied to change 

What are the 
various 
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the associated Cohort Property.  Where process rates are applied directly (for 
example, development), the weekly process rate should be 7 times the daily 
rate.  However, where process rates are applied proportionately (eg, mortality 
and stage transfer), the relationship is not so simple.  In the example in Fig. 
6-13, if the timestep is 1 day, we would end up with a total mortality of .5217 
after 7 days.  

5217.0

)1.01()1.01()1.01()1.01()1.01()1.01()1.01(1

=

−×−×−×−×−×−×−−=alityWeeklyMort
 

Thus, for a weekly timestep model, a value of 0.5217 would need to be used as 
the mortality rate to get equivalent results for that process.  In practice, there 
will not be such simple relationships between equivalent rates, as other 
components need to be taken into account.  For example, if the mortality is 
driven by Soil Moisture, that variable will also be a weekly value rather than 7 
daily values, and the exact value of the weekly rate function will need to be 
adjusted to reflect this.  Generally, weekly input variables will not show the 
extremes in values that occur with daily values (they will be averaged out), and 
process parameters will need adjustment when moving from a weekly to daily 
model or vice versa, to cater for this.  The “take-home” message is that the 
model timestep is a fundamental model property, and changing model timestep 
in an existing model requires considerable (non-trivial) adjustments to model 
parameters to give similar results.  In fact, in some cases, similar results may 
not be achievable. 

6.8 Modifying Lifestage Processes 

Lifestage processes are modified through the Lifestage Window (see Section 
6.3).  As an example, Fig. 6-15 shows the part of the Lifestage Window 
dealing with the Mortality processes.  Three Mortality processes are available 
in a normal DYMEX model.  These are Establishment, Continuous or Exit 
mortality (see Section 6.14 for details) and are separated within the process 
group by a thick light-grey line.  If the model uses spatial sub-populations, an 
additional mortality process (Post-Mix mortality) is also available. 

Either constants (Parameters), Functions or other Processes can be added to a 
process.  To add a new factor, click on the process name panel (the grey area to 
the left of the factor graphics) and select “Add Parameter” (Section 6.10.1), 
“Add Function” (Section 6.10) or “Add Process” (Section 6.9), as required.  
Existing factors can be edited or deleted by clicking on the corresponding 
graphic and selecting the “Edit” or “Delete” menu option, respectively.   

The factors row shows all the factors that are currently specified for this 
process.  If there are multiple factors, each is labelled sequentially “r1”, “r2”, 
etc.  A Combination Rule is set or changed by clicking the right-side panel of 
the Process Header (or sub-header if related processes are grouped together 
under the Process Header, as in the mortality processes shown  in Fig. 6-15).  
The Combination Rule will be displayed in that panel if more than one process 
factor is present (or at any time a user-defined Combination Rule is used). 
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Fig. 6-15 Part of a Lifestage Window, showing the Mortality processes. 

 

The process name and description can be changed by clicking on the Process 
Name panel and selecting “Change name” or “Add Description” from the 
resulting popup menu.  Once a description is provided, it is displayed in a 
separate panel below the Combination Rule.  The description can then be 
changed by clicking on that panel and editing it in the dialog that appears. 

 

6.9 Process Component Dialog Boxes 

The Process Component Dialog (Fig. 6-16) is used to specify the properties of 
a process factor.  This dialog is used for this purpose for any process factor, not 
just those used within lifecycle modules.  The name of the Process can be 
specified or changed in the edit box at the top of the dialog.  If required, a 
comment that documents the Process may be supplied by clicking on the 
Description button.  

Either constants (Parameters), Functions or other Processes can be added to a 
process.  By left-clicking on the Parameter, Function or Process buttons 
within the Add Component As region, another dialog box will appear where 
the detailed description of the Parameter, Function or Process can be 
supplied.  Note that if a component Process is added or edited, its dialog will 
not have another Process button – i.e., processes may only be nested to a depth 
of one level. 

The Components box lists the factors that are currently specified for this 
process.  Each factor is labelled “r1:”, “r2:”, etc., in sequence.  The label is 
followed by either (P), (F) or (X), indicating that the factor is a Parameter, 
Function or Process, respectively, and then its name.  If the factor is a 
Function, its Driving Variable and the Function Shape are given between 
parentheses at the right. 
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Fig. 6-16  Process Component Box for an example mortality process with 
component factors shown in the component list. 

 

Components can be edited or removed by selecting the Edit Component or 
Delete Component buttons respectively, or using the Cut, Copy and Paste 
buttons.  If more than one component is shown within the Process 
Components box, the Combination Rule is displayed in the “Combination 
Rule” section of the dialog.  The Change button will also be enabled to allow 
the rule to be changed if required.  See section 6.11, The Combination Rule, 
page 57. 

 

6.10 Function Dialog Boxes 

Selecting a Function component opens the Function dialog box allowing the 
function type, the driving variable and the parameters of the function to be 
chosen. 

In the example below (Fig. 6-17) a development component (Egg 
Development - Temperature) is dependent on the variable Daily Temperature 
Cycle and is modelled using a 2-segment Linear function.  To complete the 
specification of the component, select the function template (ie. 2-segment 
Linear) from the function template drop-down list, below the white box 
illustrating the currently selected template shape (empty when no template is 
selected).  Select the Independent Variable (ie. Daily Temperature Cycle) 
from the drop-down list.  The Parameters box will list the parameters when 
you choose any template that has parameters.  Selecting one of the parameters 
(by clicking on it), and then clicking on the Edit Parameter button opens the 
Set Parameter Properties dialog box, where the parameter details can be 
specified.  Alternatively, the parameter may be replaced by a function.  This is 
achieved by selecting the required parameter and clicking the Set Function 
button (this opens another Function dialog). 
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Fig. 6-17   Function dialog box with example function. 

 

If required, the selected Function Template may be modified (for example, 
limited to positive values), by clicking on the Advanced button (see Section 
6.10.2). 

Functions and their parameters should be given descriptive names to help in 
documenting the model.  To change the name of a function, select the Change 
button in the Name panel at the top left of the dialog box. 

Not all variables displayed in the list of driving variables are suitable for use as 
a driving variable in a function (e.g. summary variables).  See section 2.1, 
Variables  for details. 

6.10.1 Parameter Properties Dialog Boxes 

Set Parameter Properties  dialog boxes are used in many places in DYMEX.  
Two forms of the dialog are used.  The first is used for parameters whose 
values are the same across all subpopulations.  The other (Sub-population 
Parameter dialog)  is used where the module that owns the parameters takes 
part in the model’s sub-population structure and therefore the parameters may 
have different values for different sub-populations.  Both types of dialogs have 
a section at the top that shows the type (the “generic” name) and name of the 
parameter.   In the example shown in Fig. 6-18 we are looking at the first 
parameter of the “2-segment Linear” function (Line 1 X-intercept). By 
default, this is the name given to the parameter, though it is recommended that 
the name is changed to something more meaningful using the User Name edit 
box. 
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Fig. 6-18  Parameter Properties dialog box with example values. 

 

All Set Parameter Properties dialog boxes contain three boxes labelled: 
Lower Limit, Upper Limit and Default value.  The first two of these allow 
the user to restrict the values that the selected parameter can take within the 
Model Simulator.  In Fig. 6-18 Threshold Egg Development is set to a default 
of 11.7 with a permitted range of 8 to 15.  This means that the user can change 
the parameter to any value between 8 and 15, inclusive, in the Simulator (Fig. 
6-19).  If no upper and lower limits are entered, then there are no restrictions 
on the parameter value. 

Fig. 6-19  Parameter list from the Model Simulator. 

If no default is entered and upper and lower limits are set then the initial value 
of the parameter will be set to the mean of the upper and lower limit.  If either 
an upper or lower limit (or both) is omitted then the default value must be set.  
Parameters can be restricted to a single value by setting the upper limit, lower 
limit and default to the same value. 

If any of the values are negative, the Lower Limit will be the most negative of 
the values, even if this is of greater magnitude than the Default value or 
Upper Limit.  This is logically correct, although some people find it counter-
intuitive. 

Note that it is not necessary to set upper and lower limits.   

Default 
values and 

upper & lower 
limits  
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An example of the Sub-population Parameter dialog is shown in Fig. 6-20.  
It is very similar to the normal parameter dialog discussed above, with the 
exception of an additional list of parameter values below the name of the 
parameter.  When this dialog is entered for the first time for a particular 
parameter, only a single item, with the Sub-population Id of “(Default”), is 
shown in the list box.  The values shown for that item will be used for the 
parameter for all sub-populations.  To set different values for different 
subpopulations, click on the Add Subpopulation Items button.  The different 
subpopulations will now be displayed in the first column of the list (the 
“(Default)” item will also still be present).  The minimum, maximum and 
default values for the subpopulations can then be set by selecting the 
appropriate row and typing in the desired values in the Value boxes.  A 
comment can be provided for each subpopulation parameter. 

Fig. 6-20  The Sub-population Parameter dialog box. 

 

 

6.10.2 Advanced Function Properties (Function modifiers) Dialog Box 

Sometimes one of the user-defined functions almost does what is required.  For 
example, we may have a process that we want to behave like a Linear above 
Threshold, but with the restriction that it must never exceed a value of 1.  In 
this case, the Advanced Properties setting may be used to modify the selected 
function.  In this example, a High Limit of 1.0 would be set for the function to 
achieve the desired result. 

The settings in the Advanced Properties dialog box modify the result of the 
selected function, f(x), to yield the process component rate output, y.  The final 
value can be modified by using any of Y-offset (yoff) and Scale Factor (s), or 
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limited by High Limit (ymax) and Low Limit (ymin) (see Table 6-3).  The 
evaluation proceeds as follows: 

)))(,min(,max( maxmin xsfyyyy off +=  

Table 6-3  The advanced properties of functions and their definitions. 

Modifier Definition 
Y-Offset Adds this value to the value output from the function (if left 

blank it is equal to zero).   
Scale Factor The value that is output from the function is multiplied by 

this value (if left blank is equal to one). 
High Limit This is the maximum value the value output from the 

function can attain (blank means no upper limit enforced). 
Low Limit This is the minimum value the value output from the 

function can attain (blank means no lower limit enforced). 

Note that some advanced parameters are invalid with some functions.  In those 
cases, the corresponding edit field will be disabled.  For example, the Low 
Limit, Y-Offset and Scale Factor are not available with any of the “above 
Threshold” functions. 

6.11 The Combination Rule 

If there are multiple components in a process, the combination rule must be set.  
The results of evaluating each process factor (f1, f2, …, fn) are combined as 
defined by the combination rule to give a single process rate, r.   

The Combination Rules provided for in DYMEX are as follows: 

  Sum    nfffr +++= ...21  

Product   nfffr ×××= ...21  

Complement product  )1(...)1()1(1 21 nfffr −××−×−−=  

Minimum   r = minimum of (f1, f2, ... fn) 

Maximum   r = maximum of (f1, f2, ... fn) 

User-defined   r = f (f1, f2, ... fn) 
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Fig. 6-21  The combination rule dialog box. 

 

Choice of the appropriate combination rule will depend on what is required for 
the particular process.  For example, let us assume we have an insect (such as a 
whitegrub) where adults emerge from the ground after a minimum hardening 
period, and when a sufficient amount of rain has fallen.  We could model this 
by creating two adult stages (“Adult in Ground” and “Emerged Adult”), with 
individuals in the former stage moving to the latter via a transfer process 
containing two factors.  The first factor (the “hardening period”) could be 
driven by Physiological Age (using a “Step” function), while the latter could be 
driven by Rainfall (possibly using a “Linear above Threshold” function).  
Since we need both conditions to be satisfied, the Product combination rule 
would have to be used. 

The Complement product combination rule is appropriate for mortality 
processes, since, when combining mortalities from different sources, we are 
actually doing survival (1-mortality) calculations.  An example will illustrate 
this best.  Assume we have a mortality process with 3 independent factors, 
which during a particular timestep evaluate to 0.5, 0.2 and 0.  That means that, 
taken on their own, the first factor would cause a mortality of 0.5, the second 
of 0.2, while the third would cause no mortality at all. 

Combining these using the appropriate Complement product rule would yield a 
total mortality of 0.6, as below: 

1 1 0 5 1 0 2 1 0 0 6− − × − × − =( . ) ( . ) ( ) .  

If we had used the Product combination rule, the total mortality from these 
factors would be 0 – obviously wrong: 

0 5 0 2 0 0. .× × =  
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An example of the use of the Sum combination rule would be in a user-defined 
Cohort Property such as Stress.  The associated process could sum the 
contributions to Stress from high and low temperatures. 

Combination rules allow for complex logical control of when life processes 
such as stage transfer occur.  The process factors used for logical control are 
most commonly step or step (general) functions with a step height of 1 to 
signify the “on” condition and a step height of 0 to signify the off state. 

The Product combination rule is the same as a logical “and” i.e. both factor A 
and factor B must be true or “on” in order for the process to evaluate to true or 
“on”.  If either or both of the factors are not “on” then the process is turned off.  
For example, seed germination requires that both temperatures and soil 
moisture be within suitable bounds.  If either factor is not suitable then 
germination does not proceed. 

The Maximum combination rule is similar to a logical “or” i.e. either factor A 
or factor B or both A and B can be true or “on” and the process evaluates to 
true or “on”.  The Minimum combination rule is similar to a logical “nor” i.e. 
if either factor A or factor B or both A and B are false or “off” then the process 
evaluates to false or “off”. 

A factor can be logically inverted with a user-defined combination rule using 
the term: 

1-[x1] 

where [x1] can have a value in the range 0-1.  The same effect can be achieved 
by using a Linear below Threshold function with a threshold of 1 and a slope 
of -1. 

 

6.12 The Development Process 

In DYMEX, development is the process that affects the built-in Cohort 
Property Physiological Age. 

Physiological Age is thus a measure of the state of development (or maturity) 
of a cohort, with units that are generally stated as a proportion (or percentage) 
of completed development.  For example, seeds of plants such as annual 
ryegrass undergo a period of dry after-ripening to ensure they don’t germinate 
during the unfavourable summer season.  The Physiological Age of the seeds 
might be scaled to be 0 when they are first shed, and 1 when the seeds are 
ready to germinate.  Since development in plants is usually dependent on 
temperature, the rate of accumulation of Physiological Age is generally not 
constant.  

The Physiological Age of each cohort is updated, using the development 
process, once during each timestep.  Development is additive (direct).  When a 
process value is obtained from the set of process components, that value is 
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added to the current value of Physiological Age.  See Development Update 
Method page 61. 

Note that the accumulated development is not automatically linked to the 
length of time that an individual spends in a particular stage.  The latter is 
determined in the Stage Transfer process.  Usually, and especially with insect 
models, the Stage Transfer process will be driven via Physiological Age, which 
achieves the coupling of development and time spent in the lifestage. 

Below is an example where a linear above threshold relationship (Fig. 6-22) 
between rate of development and temperature, has been set for juveniles in this 
example population (Fig. 6-23). 

Fig. 6-22 A DYMEX “Linear Above Threshold” relationship between 
development and temperature. 
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If there is a Linear above Threshold relationship between development and 
temperature (Fig. 6-22) and the temperature that is used is to drive 
development is a daily temperature cycle, the changes in Physiological Age are 
equivalent to an accumulation of degree days.  In fact, if the slope of the 
Linear above Threshold function is set to 1, then the Physiological Age at any 
time will be the same as the accumulated degree-days above the threshold 
temperature.  In order to implement a degree-day model fully, the stage 
transition threshold (in the Stage Transfer process) needs to be set to the 
number of degree-days required for full development of that stage.  In addition, 
the lifestage output variable “Development Time” should have its 
Physiological Age set to the required number of degree-days for reporting 
purposes. 

 To complete an example development component 

1. Left click on the development button in the lifestage box to open 
the development dialog box. 

2. To add a “Linear above Threshold” relationship left click on the 
Function button within the Add Component As box.   

3. From the drop down box on the right-hand side of the function dialog 
box choose the “Linear above Threshold” function. 
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Fig. 6-23  Development process function dialog box with example Linear above 
Threshold function. 

 

Temperature data must be available for calculation of temperature-dependent 
development.  This is usually obtained using a data file module.  Mean 
temperature can be obtained from maximum and minimum temperature by 
means of an Expression module (page 111) or, as in the case illustrated; a 
daily cycle is derived by the Circadian module (page 123). 

4. Select the temperature input variable from the drop down list of 
possible independent variables (Fig. 6-23).   

5. Set the parameters to suitable values using the Parameters dialog 
box (Fig. 6-18).   

6. Rename the function giving it an informative name (e.g. 
“Development Threshold Temperature”). 

7. Left click on OK and when you return to the lifecycle window there 
should be a green tick on the development process button for the 
appropriate lifestage. 

 
The estimated timing of completion of development of a particular lifestage 
tells us when they are likely to appear in field samples and when to apply 
control measures.  However, it does not tell us the abundance of the species, 
which depends on the reproductive and mortality factors of the population. 

If more than one process is used to drive development, a combination rule has 
to be used.  The Product combination rule is often the most appropriate for 
development (see The Combination Rule, page 57). 

6.12.1 Development Update Method 

The cohort’s Physiological Age is incremented by the value obtained from the 
combination of the process components in the current timestep.  For example, 
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assume that a development process consists of 3 factors, which evaluate to f1, 
f2 and f3, respectively, and the Product combination rule has been selected for 
combining these factors.  If At and At-1 are the values of Physiological Age in 
the current and previous timesteps, respectively, then: 

)( 3211 fffAA tt ××+= −  

6.12.2 Insect Development 

Due to the nature of the cuticle of insects, which makes up the exoskeleton of 
insects, development is not continuous.  As the epicuticle cannot be stretched, 
insects must moult regularly.  The stages between moults are called instars.  In 
some insects, growth is indeterminate (Apterygote) and moulting continues as 
long as the individual is alive.  In the remaining insects (Exopterygote and 
Endopterygote) growth is determinate and the insects moult to a final instar 
when growth ceases.  The last instar is reproductively active and is called the 
adult stage. 

The time spent in each instar, the intermoult period or stage duration, depends 
on a number of factors, including temperature and diet.  In most insects 
temperature accounts for the bulk (over 90%) of the variation in development 
time.   

Fig. 6-24 An example of a typical insect development function relative to 
temperature. 
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Many functions have been proposed to describe the development-temperature 
relationship (e.g. Allsopp et al. 1991).  In general, the relationship between 
development and temperature is non-linear.  However over a wide range of 
temperatures the rate of development is effectively linear (Fig. 6-24 stippled 
region 2).  Using a linear relationship, we can identify a temperature threshold 
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for development below which there is negligible development (Fig. 6-24 
region 1).  Above this development threshold (often termed the base 
temperature for development), development proceeds at a constant rate.  This 
type of relationship between temperature and development within region 2 of 
the temperature range is common amongst insect species.  

If the temperature experienced by the species being modelled extends beyond 
region 2 of the temperature range, other functions can be used from the list of 
function templates available from within DYMEX e.g. Logistic, Pradhan, 
Stinner, 3-segment linear, etc. to describe development.  Alternatively, an 
appropriate custom-made function template can be created using the user-
defined template facility (Section 10.1). 

The development functions, together with a daily fluctuating temperature 
(which can be obtained from the Circadian module), can be used to calculate 
the physiological age accrued during each timestep of the model.  

6.12.3 Plant Growth and Development 

Plant development is very different from that of most animals.  With animals, 
the fundamental body plan of the adult is laid down in the embryo so all the 
organs and tissues are present, at least in a rudimentary form.  Once an animal 
has reached maturity, development usually stops.  With plants, size, measured 
as biomass, basal area or leaf area index, is usually more important than 
physiological development per se.  Abiotic environmental conditions, 
herbivory and competition from other plants play an important role in many 
cases in restricting the maximum size that a plant can attain. 

The benchmark relative growth rate of a plant (e.g., g g-1 day-1) is taken as the 
rate attained by an isolated plant (i.e., free from competition), under ideal 
growing conditions.  As a plant increases in size, self-shading of leaves within 
a developing plant canopy, and commensurate increases in the volume to area 
ratio of the plant reduces the efficiency with which light and other resources 
are captured relative to the total plant biomass.  The change in the relative 
growth rate of a plant throughout its life has been termed ontogenetic drift. 

For sessile organisms like most plants, physical space is a resource, as well as 
an index of available resources “captured” by an individual.  If the architecture 
of the plant does not change appreciably throughout its life, then the area 
occupied exclusively by it (its ecological field) can probably be estimated by 
an allometric function of its biomass. 

b
F AmE =  

where A is the allometric constant, and b indicates the rate of change in the 
relationship between mass and area, and theoretically has a value close to 2/3. 

Plant growth is controlled by a complex mixture of factors and is poorly 
understood in most species.  Primarily there are five factors that affect plant 
development: moisture, temperature, radiation nutrients and daylength.  All 
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may need to be included in a plant population model. 

Plant development is halted if the necessary nutrients are not present, are 
present at insufficient concentrations, or in combinations that are too 
unbalanced to absorb.  Development can also be inhibited if one or more of 
these nutrients are in too high a concentration.  In cultivated soils the ions of 
nitrogen, potassium and phosphorous are most commonly present in less than 
optimal levels, and one or more can be used as a driving variable for plant 
development functions. 

Moisture (soil and atmospheric moisture) has a very important role in plant 
development.  Plants need water as a solvent to allow nutrients to enter the 
plant and move through its tissues.  Water is necessary to maintain turgidity in 
plants.  A special module is available in DYMEX to allow the calculation of 
soil moisture from rainfall and evaporation (see The Soil Moisture (1-layer) 
Module, page 139). 

Temperature is an important factor in plant development.  Because of the 
variation in the relationship between rate of growth and temperature, the 
relationship can be modelled in a manner similar to that used for insects above. 

Radiation in the photosynthetically active range (PAR) is necessary for plant 
growth.  Competition for PAR is an important component of plant competition, 
with profound effects on plant community composition and vegetation 
structure.  However, for most plant population models, the correlation between 
temperature and radiation is probably sufficient to use a temperature growth 
function as a proxy for radiation, and competition for space as a proxy for 
competition for PAR. 

Plants often use daylength and daylength change as means of cueing different 
development processes in order to avoid unfavourable climatic seasons.  For 
instance, many temperate annual plants use daylength and daylength change to 
switch from active vegetative growth of rosettes to bolting, when they start 
absorbing the rosette leaves and translocating the biomass into an upright stem 
and associated reproductive structures.  The daylength cues help these plants 
avoid seasonal summer drought. 

The Development process (and its associated “Physiological Age” cohort 
property) may be useful for modelling development of plants with an annual 
life history, but can often be ignored when modelling plant growth in biennials 
or perennials.  Instead, appropriate Cohort Properties such as “Basal Area”, 
“Biomass” or “Leaf Area Index” can be defined and growth modelled in terms 
of these.  However, the development process could be applied for determining 
the maturation of reproductive stages such as flowers or ovules, or after-
ripening of seeds in the seedbank. 

6.13 The Reproduction Process 

The reproduction process creates new individuals for the simulation.  
Reproduction is indicates on the Lifecycle diagram as a broad red line, 
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originating from the stage that produces the new individuals (the 
“Reproductive” stage) and terminating at the stage that represents the type of 
individuals produced (the “Progeny” stage).  This directed line is termed a 
“reproductive link”.  In order to make a stage reproductive in DYMEX, it is 
necessary to create a reproductive link. 

A new reproductive link is formed by right-clicking on the stage that will form 
the Reproductive Stage.  This produces a popup menu from which the “Create 
link” option is selected, after which a link can be chosen from those listed 
below the “Reproductive Links” label.  Note that progeny stages must precede 
the reproductive stage in the lifestage diagram.  If necessary, lifestages can be 
re-ordered to achieve this.  When the new reproductive link is created, empty 
fecundity and progeny production processes are also created and can be 
accessed from the Lifestage Window (Fig. 6-25).  

Fig. 6-25  Empty Fecundity and Progeny Production processes are created 
when a reproductive link is established. 

 

Each cohort in a reproductive stage starts with a potential number of progeny.  
This potential value can vary depending on the history of the organism.  For 
example, a cohort of flies may have fed better as larvae, and thus become 
larger adults, with a potential for producing more offspring.  The 
Establishment Fecundity process in a DYMEX reproductive stage sets the 
maximum number of progeny capable of being produced per organism while it 
is in that stage.  It could also be called potential fecundity.  When the cohort is 
created, the Fecundity process initializes a Cohort Variable, the Residual 
Fecundity.  The value of this Cohort Variable at any time indicates the 
remaining reproductive potential of that cohort.  If we have more than one 
reproductive stage in a lifecycle, each will have its own Fecundity process.  
For iteroparous organisms (for example, a polycarpic perennial plant that 
flowers each year), it may be useful to be able to “recharge” the Residual 
Fecundity at intervals.  This can be done using the “Recharge” Fecundity 
process component (Fig. 6-25). 

At each timestep, a value for Progeny Production (i.e., the actual number of 
progeny per organism) is calculated.  If the resulting number is less than or 
equal to the Residual Fecundity, it is used as the current timestep’s progeny 
production rate, and the Residual Fecundity is reduced by the same value.  
Otherwise, the value of Residual Fecundity is used as the progeny production 
rate and then reduced to zero. 

For example, assume that the value of Residual Fecundity in a cohort before 
the calculation of the current timestep’s reproductive rate is Ft-1.  Also assume 
that the Progeny Production process consists of 3 factors, which evaluate to f1, 
f2 and f3, respectively, and the Product combination rule has been selected for 
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combining these factors.  If Rt is the current rate of progeny production, and Ft 
is the new value of Residual Fecundity, then: 

tRtFtF
tFffftR

−−=
−××=

1

)1,321min(
 

The number of progeny actually produced will be determined by such factors 
as the exact form that Progeny Production takes and the longevity of 
individuals in the stage.  The Fecundity processes can be defined by one or 
more factors, for example accumulated stress, size of organism etc. or it could 
be a constant.  Fecundity components (factors) can be added by clicking on the 
panels labelled “[Establishment]” or “[Recharge]” and selecting the required 
“Add” option.  Note that normally the Fecundity will be set at the start 
(establishment) or set using the “recharge” method– it will rarely be 
appropriate to use both processes within the same lifecycle. 

DYMEX currently does not explicitly account for different sex ratios.  There 
are two means of dealing with this issue.  If the reproductive life stage is 
defined to include both males and females then it will be necessary to set the 
fecundity value to the potential progeny per female multiplied by the female 
fraction of the adult population.  If half the population consists of males, the 
actual value of Fecundity should be set to one half of the potential progeny per 
female.  This sex ratio parameter could be made a lifecycle parameter.  
Alternatively, males and females could be modelled separately for part of the 
lifecycle using a branching life history scheme.  In this case the fecundity value 
should be set to the potential progeny per female.  An explicit sex ratio will be 
included in a later version of DYMEX. 

If the potential fecundity is unknown, very high or you do not intend to use 
either the Fecundity or Residual Fecundity variables in the progeny 
production processes, then Fecundity can be set to an extremely high number 
(e.g. 1 1010× ) so that there is effectively no limit on the total production of 
progeny. 

Progeny Production defines the timing of births.  No more offspring can be 
produced than defined by Fecundity.  For example, in Fig. 6-26 there is a 
relationship between Progeny Production and chronological age of the 
individual.  The Fecundity (not recharged) equals 5 and there is a “Linear 
above Threshold” relationship between chronological age and progeny 
production with a threshold (in this case the age after which they start 
reproducing) of 8 days.  The slope is 0.2, i.e. after 8 days the number of 
progeny being produced increase linearly until 15 days when the potential 
fecundity (5) is reached (Fig. 6-26).  Note that the numbers above the bars 
indicate the cumulative progeny produced by the corresponding age. 

Sex ratio 
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Fig. 6-26  An example of progeny production as a function of age.  Cumulative 
numbers of progeny are shown at each age step. 
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 To complete example Fecundity and Progeny Production 
processes: 

1. Create the reproductive link, as described in Section 6.13 above and 
open the Lifestage Window of the reproductive stage.  The 
Fecundity process (and its two components) will be visible near the 
bottom of the window (Fig. 6-25).   

2. If Potential Fecundity is to be set once per cohort, left click the 
[Establishment] panel.  Add parameter, function or process 
components as appropriate.  If the Fecundity is to be reset 
throughout the life of the cohort, click on the [Recharge] panel and 
set the appropriate process factors. 

3. Left click the Progeny Production panel and choose whether you 
have a changing progeny production rate (i.e. a function dependent 
on some driving factor such as time) or a constant progeny 
production per timestep.  

If necessary, set the Parameters for any function components.  Rename the 
parameters to meaningful names, e.g. Slope: “Rate of seed production”.   

If steps 2 to 3 above have not been fully completed, there will be a red cross 
across the reproduction process button when you return to the lifecycle 
window. 

6.13.1 Timing of Reproduction 

In DYMEX, progeny production always occurs at the end of a timestep.  
Therefore, the cohort of offspring does not appear until the next timestep.  For 
example, if, in your progeny production process you have offspring being 
produced on day 10 of your simulation then the cohort of progeny will not 
appear until day 11.  As Progeny Production is a special case of a Stage 
Transfer process, the same timing as for Stage Transfer applies (Section 
6.15.2). 
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6.13.2 Genetic Mixing 

If genetic subpopulations have been defined for the lifecycle, a Genetic 
Mixing process is automatically added to every reproductive lifestage. In the 
current version of DYMEX, exactly three subpopulations (genotypes) must be 
defined for this to happen.  This corresponds to a single, autosomal locus with 
two alleles with Mendelian inheritance, with each sub-population representing 
one genotype (AA, Aa and aa).  The genetic mixing process simulates the 
mechanism of genetic exchange during reproduction and assumes random 
mating.  The genetic mixing process is not user-adjustable. 

6.13.3 Insect Reproduction 

Most insects are oviparous; that is, the adults lay eggs, although other modes 
of reproduction, such as larvipary, do occur. 

While age can be important in determining the egg production rate, with higher 
egg production occurring as the individual gets older, temperature and resource 
availability are also important driving variables in insect progeny production.  
The latter is obviously an important factor in phytophagous insects, where 
often no eggs will be laid if either the host plant is unavailable or is at the 
wrong stage of development.  Insects often lay eggs in batches, with 
considerable periods of time between each batch.  For some situations, this 
may be modelled best by using several successive reproductive stages, with the 
Fecundity in each stage referring to the batch size. 

Below is an example of a simple model of Fecundity for a fruit fly (Fig. 6-27).  
In this example potential fecundity is constant, and has been set to half the 
normal female potential fecundity to account for a sex ratio in the population 
of 1:1. 

Fig. 6-27  An example of constant egg production. 

  

For the same fruit fly example, Progeny Production is dependent on two 
factors, temperature, rainfall and age.  High rainfall reduces egg production 
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and higher temperatures (up to a threshold) increase egg production.  To obtain 
these relationships, a linear below threshold function driven by rainfall (i.e. 
egg production increases below a certain daily rainfall e.g. 100 mm) and a 2-
segment linear function driven by temperature (i.e. egg production increases 
above a certain temperature e.g. 20 degrees) are used.  A product combination 
rule is used to combine the components (Fig. 6-28). 

Fig. 6-28  An example component list for progeny production. 

  

6.13.4 Plant Reproduction 

Plants reproduce in a wonderful variety of ways, including the sexual or 
asexual production of seeds and spores, the production of clonal embryoids or 
plantlets (e.g., Bryophyllum spp.), modular vegetative reproduction as in grass 
tillers or rhizomes, and leaf or stem fragments (e.g., Salix spp.).  This variety 
of mechanisms is compounded by the diversity of life histories employed by 
plants (i.e., ephemeral, annual, biennial, facultative biennial, perennial) and the 
pattern of climatic seasons to which they are adapted.  Such marvellous variety 
makes generalising about modelling plant populations difficult. 

The most important population modelling distinction between plants and 
animals is that plants are mostly indeterminate organisms, whilst insects are 
mostly determinate.  This means that a plants’ fecundity will almost never be 
satisfactorily simulated by a fixed fecundity value.  Most often fecundity will 
be a function of plant size and/or some form of integration of the growing 
conditions prior to reproduction.  In annual plants this will usually be in the 
form of the size of the plant around the time of reproduction e.g., at anthesis.  
In perennial plants fecundity may be a function of the plant size combined with 
some measure of the net annual growth increment.  Depending upon the floral 
phenological characteristics of the plant, the relevant growth period that 
influences the annual fecundity may either be instantaneous such as in Acacia 
nilotica where flowers are produced on “new wood”, or it may be a function of 
the net amount of growth attained during the previous growing season.  The 
production of fruits on “old wood” may occur in some tropical trees for 
instance when the resources for reproduction are stored up during a favourable 
season, but not applied to reproduction until some time following, when the 
dispersal and survival of the progeny is most assured. 

Many temperate annual plants are adapted to germinating following the first 
Autumn (Fall) rains, growing rapidly during Autumn, Winter, and early-to-mid 
Spring, and then entering a reproductive phase in order to produce seeds prior 
to the Summer drought.  In this case, the transition to the reproductive phase is 
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likely to be a function of daylength, daylength change or temperature.  It is 
often useful to distinguish this phase change with the use of a separate life 
stage.  Fecundity is often a function of the size of the plant at the time of this 
phase change, and so upon entry to the reproductive stage, the fecundity may 
be set as a function of size measures such as basal area or aboveground 
biomass. 

Because seeds mature at different rates, progeny production in annual plants 
tends to spread across time as a function of day degrees following the onset of 
the reproductive phase.  A direct update Cohort Variable can be created to 
accumulate the day degrees above the base temperature.  Some form of linear 
or monotonic increasing function of the day degree cohort variable (e.g., 
exponential or quadratic) can be combined with a direct function of Residual 
Fecundity using the Product combination rule.  This will produce a sigmoidal 
pattern of cumulative seed production between the minimum and maximum 
day degree thresholds. 

Facultative biennial plants such as some thistles are typically found in stressful 
environments where the minimum size for reproduction may not be reached by 
all plants in the population due to variation in germination timing (somatic 
heterochrony) or variation in the intensity of plant competition.  In this case, 
cohorts of plants which are too small to successfully reproduce remain in the 
rosette lifestage, attempting to survive the unfavourable season and resume 
growth in the following favourable season.  When the plants would normally 
change to the reproductive phase, all second year plants attempt to reproduce, 
irrespective of their size.  We would expect that the plants that over summer 
would experience negative growth rates due to moisture stress. 

To simulate progeny production in facultative biennials it would be necessary 
combine functions of a plant size measure and Chronological Age with the 
phenology function as a switch for stage transfer to the reproductive stage, and 
then proceed as for the annual plant example above.  To account for the plants 
which are too old to persist as rosettes, and too small to produce viable seed, a 
linear above threshold function of plant size can be used to drive the fecundity 
process. 

6.13.5 Vertebrate Reproduction 

Reproduction is one of the major factors controlling vertebrate population 
dynamics.  Vertebrates in general are not as responsive to the environment as 
invertebrates or plants. 

The maximum number of offspring produced is usually fixed in vertebrates, as 
potential fecundity tends not to vary with environmental factors as it may in 
invertebrates. 

An important controlling variable for vertebrate progeny production is food 
availability.  The relationship between vertebrate progeny production and food 
availability is often linear. 
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Fig. 6-29  An example linear relationship for progeny production for vertebrates. 
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6.14 The Mortality Process 

Mortality in an ecological sense is not a single process, but represents the 
outcomes of all the factors that may cause the death of an organism.  This 
makes it one of the hardest processes to model, and ecologists have tended to 
concentrate on subsets of the factors causing mortality such as disease, 
predation, harvesting, etc. (because many factors often act in combination).  
Mortality tends to be highly variable in time and space and difficult to predict. 

There are three separate mortality processes within each lifestage in DYMEX, 
termed Establishment, Continuous and Exit mortality.  If a dispersal process 
is used in a particular lifestage, a fourth mortality process (named Post-mix 
mortality) becomes available.  

Continuous mortality is applied to cohorts of organisms during every timestep 
while they are in that lifestage.  The Establishment mortality is applied just 
once, immediately after individuals have entered the lifestage (ie, just after 
cohort formation).  Exit mortality also is applied just once, immediately before 
individuals leave the lifestage.  Post-mix mortality is applied only to 
individuals that have dispersed from one spatial unit to another, just after (and 
during the same time step) that the dispersal has taken place. It is of course 
possible to have all sources of mortality in your model simultaneously.   

In any mortality process, the process rate is the proportion of the cohort 
population (NOT the actual number of individuals) that dies in a particular 
timestep. 

As with all other processes, multiple components can be used to drive 
mortality.  When combining mortality factors, the Complement Product 
combination rule should always be used at the highest level (see The 
Combination Rule, p. 57), though mortality sub-process factors can be 
combined using other combination rules.  For example, the susceptibility of a 
plant to a herbicide may be related to its age.  This may be modelled using a 
herbicide mortality factor that is a process.  This process could consist of a 
function relating the mortality rate to plant chronological age, and a direct 
function of a herbicide application event (1=herbicide applied, see The Event 
Module, page 127 for more details).  The herbicide mortality sub-process 
would use a Product combination rule, whilst the combination rule for the 
different mortality processes (e.g. drought, tillage, competition and herbicide) 
would be the Compliment-product rule. 
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Fig. 6-30  The mortality process portion of the Lifestage Window.  The Post-mix 
component will only be present if a dispersal process is used in the lifestage. 

 

 To create a mortality component 

1. Open the Lifestage Window of the lifestage to which the mortality 
component is to be added. 

2. Select the type of mortality you are adding to the lifestage by left-
clicking on the appropriate panel in the column on the far left 
(Establishment, Continuous, Post-Mix or Exit).   

3. Select the Add Parameter, Add Function or Add Process item, as 
required, from within the popup menu.    

 
If more than one mortality component of a particular type is added, the 
combination rule must be set by left-clicking on the Combination Rule panel 
(the panel to the right of the panel that shows the mortality type). 

DYMEX like most models requires the mortality values in terms of a single 
timestep.  If you have the proportion surviving a single lifestage, you have to 
convert this finite survival rate to an instantaneous rate of mortality. 

Here is a quick example of how to calculate an instantaneous rate of mortality, 
given a total mortality for the stage and assuming the mortality acts 
continuously and uniformly throughout the duration of the stage.  If we have 
40% of the lifestage surviving a lifestage that lasts 25 days (i.e., 60% 
mortality), we first calculate the natural logarithm of the survival. 

ln(0.4) = -0.916 

For a model with a daily timestep, we divide that result by 25, which then 
gives us the logarithm of the daily survival rate.  (For weekly timestep models, 
the result must be multiplied by 7, giving the logarithm of weekly survival 
rate.) 

03664.0
25
916.0

−=
−  

This then has to be converted back to the appropriate mortality rate as follows. 

036.003664.01 =−−e  

The final value is used as a constant mortality rate in a daily timestep model. 

How do I 
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Establishment mortality is used below to remove larvae at the beginning of the 
lifestage to simulate a failure to select or attach to a host due to host resistance.  
This is common in ticks where a large proportion of immature stages die when 
attaching themselves to their host.  

Fig. 6-31  An example of establishment mortality. 

 

In Fig. 6-31 the function used to determine establishment mortality is a 
modified “Power” function, while the driving variable is the current number of 
individuals in each cohort.  The function produces a mortality rate that 
increases rapidly with population size, thus producing a strongly density-
dependent effect that will have a tendency to limit the size of the population.  
Note that in the above example, each of the two “parameters” is in turn a 
function. 

Establishment mortality acts upon the cohort upon entry into the lifestage.  
Using the approach above, it is possible to have a complete failure of a cohort 
to establish (mortality = 1) if the total number of larvae (current cohort plus 
previously established cohorts) equals or exceeds the carrying capacity of their 
host resource. 

Continuous mortality effects are more common in population models.  Often 
mortality is observed in a stage, but it is not known what causes the mortality, 
and it may be necessary to add a constant mortality to the lifestage.  Below in 
Fig. 6-32, 2% of the lifestage population dies per timestep. 
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Fig. 6-32  An example of a constant continuous mortality. 

 

Events are discussed later in the User Guide (see The Event Module, page 127 
for more details).  Spraying herbicide would be such an event.  In the example 
below (Fig. 6-34) the effect of the spray is calculated within the Event module 
as an exponentially decaying effect from the spray date, and output from that 
module as the variable Herbicide Spray Effect (Fig. 6-33).  That variable is 
then used to drive continuous mortality of a weed using the Direct function (ie, 
the variable Herbicide Spray Effect is used directly as the mortality value). 

Fig. 6-33  An Event module function produces a variable (Herbicide Spray 
Effect) that is used as driving variable for the function in Fig. 6-34 
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Fig. 6-34  The mortality caused by the “event” illustrated in Figure Fig. 6-33. 

 

6.14.1 Mortality Update Method 

The mortality process affects the Cohort Property Number, which is updated 
using a proportional update method.  The new value of Number is obtained 
by removing the proportion of individuals obtained from evaluating the 
mortality process components.  Note that DYMEX automatically limits the 
mortality rate to values between 0 and 1, inclusive. 

For example, assume that a mortality process consists of 3 factors, which 
evaluate to f1, f2 and f3, respectively, and the Complement Product 
combination rule is used to combine these factors.  If Nt and Nt-1 are the values 
of Number in the current and previous timesteps, respectively, then: 

))1()1()1(1( 32111 fffNNN ttt −×−×−−×−= −−  

Note that the complement product rule should always be used when combining 
mortality processes. 

6.14.2 Mortality Timing 

On the first day that a cohort appears within a lifestage, whether it has arrived 
from a transfer from the previous lifestage, from immigration or from 
reproduction, both establishment and continuous mortality will occur.  
Establishment mortality happens first, when the cohort is created in the 
lifestage.  However, new individuals that arrive in a subpopulation via 
dispersal do NOT invoke the establishment mortality process. 

Individuals can leave a cohort via stage transfer (i.e., they move on to another 
lifestage) or dispersal (they move to another sub-population).  In the former 
case, any exit mortality defined for the originating stage is applied as they 
transfer to the next stage.  In the later case, any post-mix mortality is applied 
during the dispersal phase. 
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6.14.3 Insect Mortality 

Insect survival is often driven by environmental factors.  For example, 
extremes of temperature can cause increases in deaths.  Below is a common 
example of mortality driven by low temperatures. 

Fig. 6-35  An example mortality process driven by low temperature. 

 

In the example above (Fig. 6-35), there is a linear increase in the proportion 
dying below a particular minimum temperature. 

As well as temperature, other factors such as rainfall and predators are very 
important to the survival of insects. 

6.14.4 Plant mortality 

The causes and patterns of plant mortality tend to vary throughout its life.  
Generally, smaller plants are more susceptible than larger plants to inclement 
climatic effects because they have fewer reserves to draw upon e.g., shallower 
root systems.  Terrestrial plants tend to be susceptible to extremes of soil 
moisture and temperature. 

Drought occurs when soil moisture levels approach or drop below the 
permanent wilting point for an excessive period.  It is important to consider the 
depth of the soil profile being accessed by plants as they grow.  This 
determines the size of the soil moisture store that they are accessing.  Seedlings 
typically only access a very shallow soil moisture store which makes them 
particularly vulnerable to warm, dry periods immediately following their 
germination such as occurs when there is a false (Autumn) break.  It is possible 
to include several soil moisture modules in a DYMEX model, each with a 
different sized bucket.  Different plant life stages can access different soil 
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moisture stores for growth and mortality processes, depending upon the 
effective depth of its roots. 

Frosts frequently kill seedlings and immature seeds (endostages) in plants such 
as wheat.  This process could be modelled as a linear-below threshold function 
of air temperature as was done for insects in Fig. 6-35. 

Insect herbivory generally only results in mortality of seeds, seedlings or 
immature plants.  It is unusual for insect attack to result in mortality of mature 
plants, particularly shrubs and trees.  Rare exceptions include the case of a 
stem-boring weevil, Neodiplogrammus quadrivittatus that destroys vascular 
tissue in adult plants (Hoffmann and Moran 1992). 

Most plants are sessile organisms.  One implication of this is that as they grow, 
they tend to require more space to persist.  The density of seedlings that 
germinate and establish following a disturbance is frequently much greater 
than the density of mature plants that can be supported.  As the seedlings grow, 
the total area they need to survive (the sum of their ecological fields) exceeds 
the unit area available to them.  At this size-density limit, further growth of 
individuals comes at the expense of the mortality of some (usually the 
smallest) individuals in the population.  This mortality process is termed self-
thinning to distinguish it from the intentional silvicultural practice of 
periodically removing trees to avoid excessive plant competition, and maintain 
maximum growth rates of remaining plants. 

The so-called -3/2 power rule governing self-thinning is thought to be one of 
the few patterns in ecology that is so reliable that it has been suggested that it 
is a law.  The rule takes its name from the slope of the perimeter boundary line 
of a graph of ln(plant density) and ln(total plant biomass) of populations 
undergoing self-thinning. 

Competition in plants is usually asymmetric, larger plants tend to outcompete 
smaller plants.  In resource abundant environments, more vigorously growing 
plants will tend to outgrow less vigorous plants, further reducing the growth 
rate of the less vigorous plants, and sometimes eventually leading to the death 
of the less vigorous plant. 

Herbicide and tillage operations are frequently applied in order to kill pest 
plants.  These factors can be set up as event modules and applied to the 
relevant life stages as direct functions as in Fig. 6-33Fig. 6-34 
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Fig. 6-36  An example mortality process where the survival of the deer is 
dependent on pasture biomass: below a threshold pasture biomass there is a 
non-linear increase in deaths. 

 

6.14.5 Vertebrate Mortality 

Vertebrate survival is often dependent on food, for example reindeer 
introduced to St. Matthew island in the Bering Sea increased to 6000 then in a 
massive die off that number reduced to 42 as resources became limited (see 
Fig. 6-36 for an example of a mortality process in a vertebrate lifestage).  

Other important factors in vertebrate survival are weather (affects food 
supplies), disease (could be modelled with an Event module), predation (could 
be modelled with two lifecycle modules: one prey, one predator) and limited 
places to live and breed. 

6.15 The Transfer Process 

The transfer process is responsible for moving individuals from a cohort into 
the next lifestage.  It is a continuous process, in that it is applied to each cohort 
at each timestep (after all the other processes have been applied).  The value 
obtained by evaluating the process is the proportion of individuals in the cohort 
that are graduating to the next lifestage during that timestep.  The value is 
forced to be within the range of 0 and 1, inclusive, even if the process 
evaluates to a number outside that range.  In all respects, the Transfer Process 
is a typical DYMEX process, and can be a combination of as many factors as 
required. 

The most suitable combination rule for the transfer process will generally be 
the Product. 
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 To complete an example transfer component 

1. Open the Lifestage Window of the lifestage to which the transfer 
component is to be added  

 
The transfer process appears as the last process in the Lifestage Window.  If 
the lifestage has multiple exits, there will be a corresponding number of 
transfer processes, each labelled with the destination stage. 

 
2. Choose the required transfer process and left-click on the panel to 

the far left. 
3. Select either the Add Parameter, Add Function or Add Process 

item, as required, from within the resulting popup menu.  
If more than one transfer component is added, make sure that the 
Combination Rule is appropriately set. 

 

6.15.1 Transfer Update Method 

The process components calculate the proportion of individuals in the cohort 
that is being transferred to the next lifestage during a timestep.  For example, 
assume that a transfer process consists of 3 factors, which evaluate to f1, f2 and 
f3, respectively, and the Product combination rule has been selected to 
combine these factors.  If N is the number of individuals currently in the 
cohort, the number graduating to the next stage (T), is given by: 

)( 321 fffNT ×××=  

6.15.2 Transfer Timing 

Transfer occurs at the end of the timestep, after all processes (including 
dispersal) have been applied.  Each cohort that has a Transfer Process rate 
greater than 0 moves the graduating individuals to a Graduate Cohort (or two 
Graduate Cohorts in the case where there are two stage exits).  Any Exit 
Processes are then applied to each graduate cohort.  Note that at this stage the 
individuals still belong to the source stage as far as lifestage reporting is 
concerned.  At the beginning of the next timestep, all the Graduate Cohorts 
destined for a particular destination lifestage are combined to form a new 
cohort of the next stage, to which any Establishment Processes are then 
applied.  Some Cohort Variables will have their values transferred to the new 
cohort (see Section 6.15.4), while others will be reset to the starting value. 
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For example, consider a case where Physiological Age is driving the transfer 
and a step function is used with a threshold of 1 and a step of 1.0.  If the 
physiological age of the cohort at the beginning of a particular day was 0.98 
and rose to a physiological age of 1.5 by the end of the day, the entire cohort 
would be transferred at the end of that day (Fig. 6-37). 

Fig. 6-37  A transfer function and its effect. 

 

6.15.3 Branching Transfer 

If a lifestage has two Stage Links exiting from it (i.e., the stage is the start of a 
lifecycle branch), each exit must have a Transfer Process specified for it.  How 
many individuals actually transfer (graduate) to each of the next stages on a 
particular time step will depend on the value of each Transfer Process and are 
calculated as follows.  Assume t1 and t2 are the proportion transferring via 
branch 1 and branch 2, respectively, from a particular cohort as calculated 
directly from the respective Transfer Processes.  Then the proportion of 
individuals actually graduating from the cohort on that timestep (pt) is 

)1()1(1 21 ttpt −×−−=  

Then the actual proportion of individuals transferring to the next stages via 
branch 1 (p1) and branch 2 (p2) are 

)( 21

1
1 tt

tpp t +
×=  

)( 21

2
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6.15.4 Cohort and Cohort Variable Transfer 

The Cohort Transfer dialog (Fig. 6-38) can be used to specify how cohorts 
and Cohort Properties are handled during transfer from one lifestage to the 
next.  The dialog is accessed by left-clicking on the appropriate stage link 
arrow in the lifecycle diagram and then selecting Cohort Transfer from the 
resulting popup menu.   

The default behaviour of DYMEX is to create a single new cohort in a 
lifestage each timestep from individuals transferring to that stage from another 
(no matter how many cohorts they originated from).  This default can be 
overridden for any pair of stages in the Cohort Transfer dialog, so that a 
separate cohort is created from those individuals transferring from each source 
cohort destination stage, without being combined into one.  To do this, make 
sure that the Keep option is selected in the Cohort Transfer Action panel.  
This option should be used with caution, as it is likely to create a large number 
of cohorts and severely slow the running of the model. 

As individuals leave one lifestage and transfer to the next stage (as members of 
cohorts), some of their properties (Cohort Variable values) move with them.  
Any Cohort Properties whose values are not reset to their starting value during 
the transfer (which is the default for Global properties, see Section 6.4) are 
dealt with in the following manner:  The values of the Cohort Properties in 
each of the parent cohorts are combined using a weighted average (the number 
of individuals in each cohort is used as the weight) to give a value for the new 
cohort. 

Fig. 6-38  A Cohort Variable Transfer dialog, showing two Cohort Variables with 
overridden default transfer handling. 
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The Cohort Transfer Dialog can be used to specify which Cohort Variables 
are transferred (i.e., the dialog can be used to override the default handling of 
Global and Local).  The dialog lists all the user-defined Cohort Variables (Fig. 
6-38), along with their default handling (L for local, G for global), and how 
they will be handled in this stage transfer.  An asterisk following the default-
handling symbol indicates that the default handling has been overridden.  To 
change the way that a Cohort Variable is handled during the transfer, highlight 
the required variable by clicking on it, and then select either the Keep value or 
Reset value buttons below the list. 

 

6.15.5 Insect Stage Transfer 

With insects, the transfer process can be dependent on a number of factors 
including temperature, moisture, food availability, etc.  The most common 
situation is one where Physiological Age (driven by the development process) 
causes stage transfer when it reaches a particular value.  Sometimes this needs 
to be combined with a second factor.  For example, eggs may hatch when they 
are fully developed, as long as the relative humidity is high enough.  

Two common functions used to link Physiological Age to the transfer of 
individuals to the next lifestage are illustrated below. 

Fig. 6-39  Two example functional relationships between physiological age and 
the proportion transferring. 
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The first function in Fig. 6-39 is a little unrealistic.  The entire cohort is 
transferring once they have reached full development.  The second function 
has some individuals within the cohort transferring to the next lifestage a little 
early while some transfer later.  Note that with function 2 (the Linear above 
Threshold) the function’s maximum Y-value is 1.0 (see Advanced Function 
Properties (Function modifiers) Dialog Box, page 56).  

6.15.6 Plant Stage Transfer 

In plants, the stage transfer processes depend largely upon how the lifestages 
are defined.  Generally, germination will depend upon soil moisture and 
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temperature, though after-ripening or complex dormancy cycling mechanisms 
may also be important factors.  Dormancy cycling can be simulated using a 
branching lifecycle and using a stage transfer function similar to Fig. 6-39.  
The dormancy induction or breakage processes can be used to drive the 
Physiological Age process as in Fig. 6-39, or a user-defined cohort variable 
(section 6.18) could be used. 

The seedling lifestage is typically short-lived, but highly vulnerable to 
mortality processes.  Because of its short-duration and the fact that by 
definition the seedling is largely self-reliant for resources other than moisture 
and temperature, it is often useful to use a simple function based upon 
chronological age to transfer seedlings into the next (juvenile plant) stage 
stage.  Transferring between the juvenile and adult (reproductive) lifestages is 
frequently a complex combination of daylength, daylength change (positive or 
negative), and minimum plant size. 

6.16 The Immigration Process 

The Immigration Process is a way of adding individuals into the simulation 
domain (the other way is via the Lifestage initialisation mechanism in the 
Simulator).  It is a continuous process, in that it is applied to each cohort at 
each timestep.  The value obtained by evaluating the process is the number of 
individuals of that lifestage that are injected into the simulation during the 
timestep (i.e., the immigration rate/timestep). 

 To create or edit the immigration process, select the required lifestage by 
clicking on it in the Lifecycle Window, and then open its Lifestage Window.  
The Immigration Process is the first process shown at the top of this window.  
Left-click on the panel labelled “Immigration” and then select the required 
process component type from the popup menu. 

 

6.17 Dispersal and related Processes 

The Dispersal Process moves individuals between different subpopulations.  It 
is a normal, continuous process with the process rate being applied at every 
time step of the simulation.  Because more than one subpopulation is involved 
in calculating the process rate, it is formulated a little differently from the 
standard processes that are calculated from properties of just a single 
subpopulation.  Dispersal processes will be present in a particular Lifecycle 
module only if the model defines more than one non-genetic subpopulation and 
that Lifecycle module takes part in the subpopulation structure. 
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Fig. 6-40  Four subpopulations, showing the possible dispersal paths between 
them. 
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Fig. 6-40 shows a hypothetical model with four subpopulations (cells).  The 
arrows drawn between the subpopulations show all the possible ways that 
individuals can be transferred between subpopulations via the dispersal 
process.  The dispersal paths are labelled dh,a, where h is the label of the 
subpopulation that the individuals originate from (the ‘Home’ subpopulation), 
and a is the label of the location that they disperse to (the ‘Away’ 
subpopulation).  In the case of this four-subpopulation model, there are 12 
dispersal paths.  In the general case of N subpopulations, there will be N x (N-
1) dispersal paths.  During each time step of the model, each dispersal path will 
have a corresponding dispersal rate, which specifies the proportion of 
individuals in the Home cell that move to the Away cell.  This dispersal rate is 
determined by the combined action of two processes, the Dispersal-timing 
Process and the Dispersal Process.  The way that these two processes act 
together is similar to the way that Fecundity and Progeny Production 
combine to produce new individuals.  Fecundity provides a pool of “potential 
individuals” that are available for moving to the progeny stage by the Progeny 
Production process.  In the same way, the Dispersal-timing process specifies 
how many individuals are ready to disperse, but the Dispersal process is what 
does the dispersing. 

An example may help to make this clear.  The buffalo fly is a pest of cattle that 
spends most of its adult life on or around its host.  However, the newly-
emerged fly can move over quite long distances in search of a host animal on 
its first day after emergence.  To model this, the Dispersal-timing process rate 
should be large (perhaps 1) on day 1, becoming close to 0 thereafter, i.e., all 
the flies are available for dispersal on day 1 after emergence, but do not 
disperse thereafter.  The Dispersal process itself might then be a function of 
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wind vector and speed, to model the observation that that flies disperse more 
readily down-wind than upwind.  Note that the Dispersal-timing process is 
specified in the same way as any other DYMEX process, depending only on 
variables within the home subpopulation. 

Note that DYMEX accounts for all individuals in the simulation.  In a model 
that uses spatial patches with exchange of individuals between the patches, 
some individuals will be lost from the model domain when they end up in a 
region of space not included in one of the model patches (emigration).  
Similarly, individuals will arrive in patches being modelled from outside 
(immigration).  There is currently no special way to account for these losses 
and gains in DYMEX.  One possible technique for simulating this might be to 
create an extra cell that represents the non-model domain, and thus include it 
explicitly in the dispersal process.  Another may be to simply model 
emigration as a mortality process, and use the included immigration process to 
account for individuals arriving from outside the model domain.   

6.17.1 The Dispersal-timing Process 

The dispersal-timing process indicates when dispersal can take place, and can 
also be used to set a maximum limit on the proportion of the cohort that is 
dispersing.  For example, in a particular weed, the maturing seeds may remain 
in a capsule on the plant until the capsule dries out sufficiently to split open.  
After that, seeds are able to disperse (perhaps when wind strength exceeds a 
certain threshold).  The timing for this splitting of the capsule is best modelled 
using the dispersal-timing process.  In other situations, dispersal may always 
be possible in a particular stage.  For example, bush flies are able to disperse at 
any time during their adult stage.  For this situation, the dispersal-timing 
process can be set to a constant value. 

 To create a Dispersal-timing process component 

1. Open the Lifestage window for the appropriate stage.   
2. In the Lifestage window, find the process (green horizontal bar) 

labelled Mix Timing and left-click on it.  This will display a small 
menu. 

3. From the menu, select “Add Function”, “Add Parameter” or “Add 
Process”, according whether a function, parameter or process is to 
be added as a factor to the Mix Timing process. 

4. A dialog for setting the details of the new component will appear.  
Fill in the details, then click “Ok”, and a graphic representing the 
new component will appear below the Mix Timing bar in the 
Lifestage window. 

 

6.17.2 The Dispersal/Mixing Process 

The Dispersal (or Mixing) process moves individuals between subpopulations.  
The specification of the Dispersal process is more complex than that of other 
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processes, as it can depend on values of variables for both the originating 
(Home) and destination (Away) subpopulations.  In DYMEX, all the dispersal 
rates for a single Dispersal process are specified using a just one equation.  The 
equation is formulated using the same syntax as is used for other user-defined 
process rate equations, with the following exception.  The process components, 
which for most processes are indicated as [r1], [r2], etc in the process 
equation, are indicated using [h1], [h2], etc and [a1], [a2], etc, where 
components prefixed with ‘h’ refer to Home cell values and those prefixed 
with ‘a’ refer to Away cell values.  For example, if factor 1 specifies the x-
coordinate of a cell, then [h1] is the x-coordinate of the home cell and [a1] is 
the x-coordinate of the away cell. 

Assume we have a particular Dispersal process with 3 components (factors).  
The first two factors are the longitude (factor 1) and latitude (factor 2) of the 
centre point of the cells in the simulation.  Factor 3 is a simple parameter that 
is used to scale the dispersal rate.  Then a dispersal rate process equation that 
causes dispersal rates to be inversely proportional to the distance between cells 
is formulated as follows: 

[h3] / sqrt((([h1]-[a1])^2)+(([h2]-[a2])^2)) 

This calculation is used to obtain each dispersal rate, with the appropriate 
values being substituted for [a1], [a2], [h1], [h2], and [h3].  If the model 
population was divided into 4 subpopulations as in Fig. 6-40, 12 rates would 
be calculated using this formula at each time step. 

Consider the cell numbered “1” in Fig. 6-40.  There are 3 dispersal paths 
leading out of this cell, each with its own dispersal rate.  How many 
individuals actually disperse to each of the other cells on a particular time step 
will depend on the value of each Dispersal Process and are calculated as 
follows.  Assume d1,2, d1,3 and d1,4 are the proportion dispersing to cells 2, 3 
and 4, respectively, from a particular cohort as calculated directly from the 
Dispersal Process.  Then the proportion of individuals actually dispersing from 
the cohort on that timestep (D1,t) is 

)1()1()1(1 4,13,12,1,1 dddD t −×−×−−=  

Then the actual proportion of individuals dispersing from cell 1 to cell i (D1,i) 
is 

)( 4,13,12,1

,1
,1,1 ddd

d
DD i

ti ++
×=  

The individuals that arrive at the Away subpopulation in any one timestep are 
placed into new cohorts.  By default, a new cohort is created for the set of 
individuals from each dispersal path.  It should be immediately apparent that 
this has the potential to create a large number of cohorts very quickly, causing 
the simulation to proceed very slowly or even to run out of available memory.  
Several strategies are available to reduce the number of cohorts that are 
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generated and these are discussed later in this Section.  The method used will, 
of course, depend on the system being modelled since the purpose of the model 
is to approximate the system as accurately as required. 

Fig. 6-41  The Combination Rule dialog used with the Dispersal/Mixing process. 

 

 To add and configure Dispersal process components 

1. Open the Lifestage window for the appropriate stage.   
2. In the Lifestage window, find the process (green horizontal bar) 

labelled Dispersal/Mixing and left-click on its left side.  This will 
display a small menu. 

3. From the menu, select “Add Function”, “Add Parameter” or “Add 
Process”, according whether a function, parameter or process is to 
be added as a factor to the Dispersal/Mixing process. 

4. A dialog for setting the details of the new component will appear.  
Fill in the details, then click “Ok”, and a graphic representing the 
new component will appear below the Dispersal/Mixing bar in the 
Lifestage window. 

5. Repeat steps 2 – 4 for each component to be added to the process. 
6. Click on right-hand region of the green horizontal bar labelled 

Dispersal/Mixing to open the Combination Rule window. 
7. Set the required Combination Rule (see Section 6.11) 
 

The dispersal process will now appear in the Lifestage window as shown in 
Fig. 6-42. 

As was mentioned earlier, dispersal can potentially generate a large number of 
cohorts, causing simulations to run very slowly or even depleting the available 
memory.  There are several ways to reduce the number of cohorts generated.  
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Any of the following will restrict the number of cohorts generated, but the 
method chosen should be a realistic representation of the system being 
modelled:  

• Judicious use of timed dispersal (for example, only when the Chronological 
Age == 1, Physiological Age. > 0.5, or similar.  This method is appropriate 
when dispersal takes place during a particular phase of an organism’s life 
(for example, buffalo flies tend to do almost all of their dispersal during the 
first day of their adult life). 

• Dispersal in some species may be density dependent (for example, only 
when Number or Total Number exceeds some value). 

• A limit can be set to the number of dispersal events that individual 
organisms can undergo.  For example, a proportion of organisms may be 
able to disperse at any time, but once they have dispersed, they stay put for 
the rest their time in the lifestage.  This limitation is set in the Simulator. 

• Small cohorts can be removed by setting the Cohort Removal conditions 
appropriately in the Simulator (for example, remove cohorts where Cohort 
Survival< 0.1). 

• Cohorts containing a very small numbers of individuals could be removed 
by setting appropriate dispersal mortality. 

• Use the “cohort grouping” mechanism to combine similar new cohorts into 
a single cohort (see Section 6.17.3 below). 

Fig. 6-42  The Dispersal/Mixing process, as shown in the Lifestage window. 

 

6.17.3 Dispersal and Cohort Grouping 

Cohort Grouping reduces the number of new cohorts created during dispersal 
by combining “similar” cohorts into a single cohort.  The feature is accessed 
from the Lifecycle Window of a lifestage that uses the Dispersal/Mixing 
process.  Click on the left side (grey) panel of the row that lists the dispersal 
process components, and from the resulting popup menu, select the Cohort 
Grouping option.  This opens the Dispersal Grouping Rule dialog (Fig. 
6-43). 
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Fig. 6-43  The Cohort Grouping Rule dialog, showing Physiological Age being 
used to combine dispersal cohorts. 

 

The box at the top shows the Cohort Variable that is to be used to determine 
the combination of cohorts.   Click on the small box with arrow on the right to 
see the available Cohort Variables, and select from that drop-down list.  The 
Group Resolution specifies a range for that Cohort Variable that will be used to 
do the grouping.  In the example of Fig. 6-43, the Group Resolution is set to 
0.05.  Cohorts in the “Away” (see Section 6.17) cell after a dispersal event 
with the same Chronological Age and Physiological Age ranging from 0 to 
0.05 (exclusive) will be combined into a single cohort, with other cohort 
properties weighted appropriately.  Another set of cohorts will be formed by 
the combination of cohorts with the same Chronological Age and 
Physiological Age ranging from 0.005 to 0.1, and so on.  This is illustrated by 
the following table: 

Potential Cohort 

After Dispersal 

Chronological Age Physiological Age “Away” Cohort 
created 

1 1 0.02 1 

2 1 0.04 1 

3 1 0.07 2 

4 2 0.08 3 

5 2 0.09 3 

6 2 0.12 4 

7 3 0.12 5 

8 3 0.13 5 

9 3 0.14 5 

10 3 0.16 6 

11 4 0.18 7 

12 4 0.19 7 
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The initial potential 12 cohorts that would be created without the use of 
“Dispersal Grouping” are combined into 7 actual cohorts.  In practice, much 
larger reductions in cohort number are possible.  There will be some loss of 
precision as cohorts are combined, but a judicious choice of Group Resolution 
should reduce this problem to acceptable limits in most cases. 

 

6.18 User-defined Cohort Variable Processes 

User-defined Cohort Variables are lifecycle variables that are defined by the 
user.  In modelling a plant, for example, its size may be an important factor 
that determines whether it will flower and how it reacts to herbicide.  A Cohort 
Variable, Size, could be created for the lifecycle to keep track of the size of 
plants in each cohort.  Once the Cohort Variable is created, the associated 
process is also automatically made available. Up to 32 Cohort Variables may 
be defined for each lifecycle.  Note that Cohort Variables are defined for a 
whole lifecycle (though often an individual Cohort Variable may be used in 
only one stage).  The Cohort Properties (local settings) options available in 
the Other Lifestage Properties dialog (Fig. 6-46) may be used to limit the 
availability or visibility of a Cohort Variable in one or more lifestages. 

 To create a user-defined cohort variable 

1. Open the lifecycle module by double clicking on the lifecycle name 
in the Component Window.   

2. Once you have the lifecycle open go to the Lifecycle menu and 
open the User-defined Cohort Variable… menu item.  This will 
open the User Defined Cohort Properties dialog box (Fig. 6-44) 
where user defined cohort variables can be added, deleted or 
edited. 

Fig. 6-44  User-defined Cohort Properties dialog box 
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3. Left click on the Add button.  The Cohort Variables dialog box 
contains the features of the user defined cohort variable (Fig. 6-45).   

4. Edit the features to suit the use of your cohort variable and close the 
dialog box.  

5. Rearrange the order of the Cohort Variables using the Move Up and 
Move Down buttons, if required.  Note that the order is only 
important for Immediate Update Cohort Variables. 

 

Each cohort variable has to have various properties set before it can be used in 
the model.  These properties include Scope, Update Method, Permitted 
Change, Range and Allowable Operations (Output).   

Fig. 6-45  An example user-defined Cohort Variable settings. 

 

Scope, which is either local or global, defines whether the user-defined 
variable transfers its value between lifestages.  A local variable will not 
transfer its value while a global variable will.  Physiological Age is an 
example of a pre-defined variable that is local, the Physiological Age is 
started at 0 in every cohort.  Size would be an example of a global user 
defined variable, as the Size would be passed on to the next lifestage (ie, a 
large than average juvenile plant would transfer to the adult stage as a larger 
than average new adult). 

If a variable is specified as Global and the lifecycle is complete, then at 
least one lifestage must be specified, at the end of which the Cohort 
Variable is reset back to its initial value.  If this is not done, the value of 
that variable is carried through between generations.  The reset specification 
is done via a Cohort Variable Transfer dialog, which is accessed from the 

User defined 
variable 
settings 
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Stage Transfer and Reproduction Process dialogs.  For example, we may 
want to accumulate and transfer Stress between a number of juvenile 
lifestages until it is used in the adult lifestage for some purpose.  It should 
then be reset in the Adult stage using the C.V. Transfer button in the Adult 
stage’s Transfer Process to access the Cohort Variable Transfer dialog (see 
Section 6.15.4).  All accumulated Stress is then lost at the completion of the 
Adult stage, and the Cohort Variable reset to its starting value.  In plants, 
we will usually be interested in creating a variety of size measures (e.g., 
aboveground biomass, basal area, leaf area index), and treating them in the 
same manner as for insect stress in the above example.  That is, setting the 
Global scope, and resetting the variable after the Adult stage.  When 
modelling vertebrates, age may be an important factor to track as it affects 
annual fecundity and senescent mortality.  It would also be specified in the 
same manner as the previous example. 

It will often be necessary to specify the starting values of global Cohort 
Properties in lifestages that will be used to initialise the model.  For 
example, in a plant model a “Plant Height” global Cohort Variable may be 
used to keep track of plant size.  By default, the variable is initialized with 
its “Initial Value”, as specified in the Cohort variable dialog (Fig. 6-45).  
However, when the simulation is initialised with adult plants, it is important 
to make sure that this variable is initialized to the height of an adult plant.  
This can be achieved by using the “Cohort Property Starting Value” panel 
(obtained via the “Other lifestage properties” icon ( ) in the Lifestage 
diagram). Select the required Cohort Property from the drop-down list (Fig. 
6-46), and type the desired starting value into the edit box.  If the edit box is 
empty, the Cohort Property “Initial Value” will be used to initialise new 
cohorts for that stage. 

Fig. 6-46  Setting a lifestage-specific Cohort Property Starting Value. 

 

Update Method, in conjunction with the Inverted setting, determines how its 
associated process changes the value of the Cohort Variable.  The possible 
settings are as follows: 

• Direct update is an incremental update method where the value of the 
associated process (P) in the any timestep is added to (or subtracted from 
if the Inverted box is checked) the value of the Cohort Variable from the 
last timestep (Vt-1) as in the equation below.  Examples where the direct 
update method would be used are Stress, where Stress is accumulated 
throughout the lifestage and age (years).  Physiological Age also uses the 
direct update method. 

Setting 
starting 
values 
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PVV tt ±= −1  

• Proportional update considers the value obtained from the process 
components in the current timestep (P) to be a proportion.  This 
proportion is multiplied by the cohort variable value in the last timestep 
(Vt-1), with Vt-1 incremented (or decremented if the Inverted box is 
checked) by the result to obtain the new value of the cohort variable (Vt), 
as in the equation below.  Mortality is an example of an Inverse 
proportional update, where the value obtained from the process 
components are multiplied by the value of Number in the previous 
timestep and that value is removed from Number.  For example, given a 
population in the previous timestep of 100, if there is a mortality of 0.8 
then there will be only 20 left at the end of the current timestep.  Plant 
growth is frequently specified in terms of relative growth rate (RGR) 
which uses a proportional update method where P=RGR-1. 

)( 11 PVVV ttt ×±= −−  

• Current Value update uses the value obtained from the process (P) in the 
current timestep as the new value of the Cohort Variable (V).  Current 
value cohort variables are clearly always local Cohort Variables.  

tt PV =  

• Current Average updates the Cohort Variable (Vt) with the running 
average of the process values over the life of the cohort.  Again, Current 
average cohort variables are obviously always local variables.  Thus, if Pt 
is the process value for the current timestep, and t is the age of the cohort 
(in timesteps), then: 

0, 0
1 =

+
= − V

t
VP

V tt
t  

The Use Latest Inputs option is used to change the order of Cohort Variable 
updating.  Normally, when a Cohort Variable is updated, the functions in 
the associated process use the previous timestep’s value for the value of 
each “Driving Variable”, even if the Driving Variable is another Cohort 
Variable.  In that case, it does not matter in what order they are updated.  
However, with this option checked, the “most recent” value of the Driving 
Variables is used.  Hence, if there is more than one Cohort Variable with 
this option checked, it is important to consider their order.  Updating of 
Cohort Variables proceeds in the following sequence:  (1) All Cohort 
Variables with the Use Latest Inputs property not set are updated, (2) 
Cohort Variables with the Use Latest Inputs property set are updated in the 
order that they are listed. 

Permitted Change has three options, increase only, increase or decrease, or 
decrease only, indicating the allowed directions of change for the Cohort 
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Variable. When the model is run in the Simulator, an error will be 
generated when the associated process produces a change in the Cohort 
Variable not permitted by this setting.  For example, we know that age can 
only increase, while stress may be able to increase or decrease. 

Range restricts the values that the cohort variable can attain.  The Minimum 
and Maximum set lower and upper bounds, respectively, to the value of the 
Cohort Variable.  The Initial Value is the value that the cohort variable is 
set to when a cohort is created and the Cohort Variable value is not 
transferred from the preceding stage.  This is the case for all cohorts created 
as a result of lifestage initialization, for all local Cohort Variables, and for 
global Cohort Variables created in the stage following a Cohort Variable 
reset.  For example, Stress would be have an initial value of zero. 

Output Operations. Three operations can be performed on Cohort Properties 
in a lifestage to generate lifestage output, as indicated in the equations 
below.  Total adds the value of the Cohort Variable over all the cohorts in 
the lifestage.  Average finds the average value of the Cohort Variable 
weighted by number of individuals in the cohort.  Accumulate reports the 
value of the Cohort Variable at the time when the initial cohort population 
has halved.  Only those output operations that make “sense” for a particular 
Cohort Variable should be selected.  For example, for a Cohort Variable 
created to keep track of the average height of a cohort of trees the Total 
would not be a useful output.  The Accumulate output can often be useful 
in fitting parameter values.  Note that by selecting an operation, no lifestage 
output variables are actually created – it only enables the creation of the 
corresponding outputs.  To actually create the corresponding output variable 
for a particular lifestage, see Lifestage Output Variables, on page 97.  The 
selected output operations are available in all lifestages by default.  If they 
are not required for a particular stage, they may be removed for that stage 
by ticking the “No Outputs” checkbox in the Lifestage Properties dialog 
(Fig. 6-46).  However, they may be The following equations detail how 
each of the outputs are calculated, with Vi being the value of the Cohort 
Variable in the i-th cohort, and ni the number of individuals in the i-th 
Cohort. 

∑= iVTotal  

∑ ∑= iii nnVAverage /)(  
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i  

 

User-defined Cohort Variable processes are created and modified in a similar 
way as the pre-defined processes, by opening the Lifestage Window and 
adding, deleting or modifying process components listed under the Cohort 
Variable name.  For example, a user-defined Cohort Variable named Egg 
Stress, with 5 continuous-acting components, might show as shown in Fig. 

Modifying the 
user-defined 

cohort 
variable 
process 
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6-47.  The panels on the right can then be used to set Establishment, 
Continuous or Exit processes affecting the selected Cohort Variable.  Existing 
process components are edited or deleted by clicking on them, as described in 
Section 6.3.1.  Note that if no processes are specified for a particular Cohort 
Variable in a lifestage, then its initial value will stay unchanged throughout the 
cohort’s lifetime. 

Fig. 6-47  The process associated with a user-defined Cohort Variable (Egg 
Stress), as shown in the Lifestage window. 

 

Fig. 6-48 shows an example of a function used to determine the accumulation 
of a Stress variable. 

Fig. 6-48  Example function dialog box for a user defined cohort variable. 

 

In Fig. 6-48 stress is determined by temperature and uses a “Double Quadratic” 
function to accumulate stress when temperature is at extremes.  This stress 
cohort variable can be used later in the adult lifestage, for example to 
determine potential fecundity. 



The Lifecycle Module 

96 

6.19 The Resource Variable and Density Calculations 

The Resource Variable is specified from the “Other lifestage properties” icon 

( ) in the Lifestage diagram (Fig. 6-49).  Specifying this variable allows 
DYMEX to conveniently calculate a measure of density within cohorts or 
lifestages.  It is not necessary to use a Resource Variable for this purpose in 
most models, however.  For example, if we are simulating a population of 
plants in a model domain (defined as a plot size in hectares), then density (in 
plants/hectare) could easily be derived from the numbers of plants in a stage 
and the plot size using (say) an Equation module.  Using a Resource Variable 
in this situation has the advantage of needing one less module.  There are 
situations, however, where the density is required in terms of a Cohort 
Property.  An example of a situation where this may be useful is when 
modelling buffalo flies, where eggs are laid in discrete cattle dung pads as soon 
as the pads are deposited, and the production of dung pads and eggs are 
modelled separately, and the dung pads’ volume (and its “decay”) is modelled 
as a Cohort Property.  Competition between larvae takes place in the pad, so a 
measure of larvae/pad (or per litre) is useful as the density measure.  If the 
dung pad volume is then used as the Resource Variable, the lifestage output 
Average Cohort Density could then be used to obtain information such as the 
average number of eggs per litre of dung.  This information could not be 
obtained in any other way.   

The following measures of density are available when a Resource Variable is 
specified: 

• “Cohort” Density – the predefined Cohort Property Density (di) is 
calculated as follows for the i-th cohort: 

di = ni/Ri , 

where Ri is the value of the Resource Variable for the i-th cohort and 
ni is the number of individuals in the i-th cohort. 

• Average Density – this lifestage output variable is the density per 
individual (i.e., the density experienced by the average individual in the 
lifestage).  This weights the final density towards cohorts with larger 
numbers of individuals, and is calculated as follows: 

Average Density = ∑ ∑ 
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Thus Average Density is calculated in the same way as all “Average” 
Cohort Property output variables.  Note that even though this output is 
available if required, it may not be useful in many situations. 

• Average Cohort Density – this calculates a density that is an average 
per cohort (as explained in the example on the previous page).  If NC is 
the total number of cohorts within a lifestage, then 
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Average Cohort Density = ∑ Ci Nd /)(  

• Total Density – this lifestage output would be used in the common 
situation, where the density “resource” is (say) the area of a farm (and 
thus Ri = R for all cohorts): 

  Total Density = ∑ Rni /)(  

Note that the Total Density is closely related to the Average Cohort Density, 
with the former being the latter multiplied by NC if R is constant. 

Fig. 6-49  Setting the Resource Variable for a lifestage. 

 

The Resource Variable could be used to determine deaths due to a 
competition for a resource.  That resource could be a population of prey or 
substrate for laying. 

Note that the Resource Variable must never equal zero (as it is used directly 
as a divisor).  If you are using a population as a resource variable add a low 
value (for example, 0.01) to the population using an expression module. 

6.20 Lifestage Output Variables 

The Lifestage Output dialog box (Fig. 6-50), which is accessible from the 
lifestage output button, lists the outputs available from the selected lifestage.  
These outputs represent summaries of the values of Cohort Variables at any 
time, and the available outputs are listed in Table 6-4. 

Note that output variables are calculated from the lifestage at the END of the 
timestep.  Therefore, say 100 individuals are born at the beginning of the 
timestep and there is a mortality process then the population output for that 
timestep will be less than 100. 

If there are no individuals within a lifestage, all output besides Total Number, 
Total Stage Mortality, Recruitment via Stage Transfer, Recruitment via 
Immigration and Total Graduates will be undefined.  An undefined value will 
cause an error if it is used as input to a module. 

If the lifestage uses sub-populations, all except the “pooled” output variables 
will have sub-population structure. 
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Table 6-4  The Output variables and their definitions. 

Output variables Definition 

Total Cohort Property 

(except Number, Density) 

The total of the Cohort Property within the lifestage.  

∑ × Cohort)in Number  Property (Cohort  =Property Cohort  Total  

Total Number The total number of individuals within the lifestage.  

∑ Cohort) in(Number  =perty Cohort Pro Total  

Total Density Total Number per unit Resource Variable.  This output is only 
available if the Resource Variable is not a Cohort Property. 

Average Cohort Property 

 

The average of the Cohort Property for individuals within the lifestage. 

LifestageinNumberTotal

Cohort)inNumberProperty (Cohort
pertyCohort Pro Average

∑ ×
=  

Total Cohort Property 
(Pooled) 

The value of the “Total Cohort Property” output variable, totalled over 
all sub-populations (available only for lifestages that use sub-
populations) 

Average Cohort Density Density of cohorts averaged over the cohorts in the lifestage. 

Mean Cohort Duration The time it takes for 50% of the cohort, which just entered the 
lifestage, to leave the cohort either by death or transfer. 

Development Time The time taken for the cohort to reach full development (i.e. the preset 
Physiological Age, usually 1.0). 

Total Stage Mortality The number of individuals in the stage that die during the timestep 
(from continuous and establishment mortality). 

Proportion Stage Mortality The proportion of individuals in the stage that die during the timestep 
(from continuous and establishment mortality). 

Survival through 
Establishment 

The percentage of individuals entering the stage that survive the 
establishment mortality process. 

Survival through Cohort The percentage of individuals entering the stage that exit via a transfer 
process (rather than mortality). 

Survival through Stage The percentage of individuals entering the stage that achieve entry into 
a succeeding stage.  This differs from Survival through Cohort by 
including the “Exit” mortality. 

Recruitment via Stage 
Transfer 

The number of individuals entering the stage via a “Stage Transfer” 
process during the timestep. 

Recruitment via 
Immigration 

The number of individuals entering the stage via the “Immigration” 
process during the timestep. 

Graduates to DestStage The number of individuals transferring out of the stage via the link to 
DestStage during the timestep. 

Total Graduates The total number of individuals transferring out of the stage during the 
timestep. 

Progeny Production The average number of progeny produced per successfully established 
individual over the lifetime of the cohort created on the corresponding 
timestep. 

Sub-population Proportion The proportion of individuals in each sub-population (available only 
for lifestages that use sub-populations) 
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Fig. 6-50  An example lifestage outputs dialog box. 

 

 

 To select or unselect Lifestage Output Variables 

1. Open the Lifestage Outputs Dialog box (Fig. 6-50), either by 
clicking on the appropriate lifestage in the Lifecycle Window and 
selecting “Outputs…” from the pop-up menu, or by selecting 
“Outputs…” from the Lifestage menu of an active Lifestage 
Window.  

2. To select a variable, click on the small box in front of the appropriate 
“Output Type”, so that a checkmark is shown in the box.  To 
unselect a selected variable, click on the checkbox to remove the 
checkmark. 

3. When an output is selected, DYMEX provides a suitable name in the 
“Name” field.  This can be changed if required by double-clicking on 
it and typing the new name into the edit field. 

4. A suitable “mnemonic” should be provided by double-clicking on the 
“Mnemonic” field and typing it into the edit box.  The default 
“precision” for display can also be changed in this way.  A 
description for the output variable can be supplied via the 
“Description” box. 

5. Repeat steps 2 to 4 for each output variable that is required from 
this lifestage. 

Note the variable type indicator shown in the second right-most field of the 
output variable type list.  It indicates whether the output variable has sub-
population structure ( ) or not ( ). 

6.21 Lifecycle Input 

If individuals are to be introduced into the population on any day other than the 
start of the simulation, the Lifecycle Input variables must be connected to the 
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appropriate Timer outputs.  The Lifecycle Input dialog is accessed from the 
Lifecycle menu and either or both of the Day of Year and Simulation Date 
inputs must be linked to the appropriate variables from the drop-down list.   

6.22 Lifecycle Factors 

There are times when a particular parameter may be required in more than one 
process within one lifestage or even within multiple lifestages in a lifecycle.  
The parameter could be specified separately in each location, but this is error 
prone because each time the parameter needs to be changed, each copy has to 
be changed.  A better solution is to define the parameter in a separate Function 
module, and then use it in each process that it is needed via a Direct function.  
This also has disadvantages – it breaks the unity of the Lifecycle module by 
moving a part of it (the parameter definition) outside.   The preferred solution 
is to use a Lifecycle Factor, which is a factor that belongs to the lifecycle as a 
whole rather than to a particular lifestage process. 

Lifecycle factors are the same as factors within other modules, such as 
Function module.  The number required is defined in the Lifecycle Properties 
dialog (Fig. 6-51, at left), which is accessed from the Lifecycle Window by 
choosing Properties from the Lifecycle menu.  Up to 10 factors may be 
specified for any lifecycle. 

Fig. 6-51  The Lifecycle Properties dialog (at left), showing three Lifecycle 
Factors specified for the lifecycle.  These factors are shown in the Factors 
dialog at the right. 

 

Once the number of factors has been set, each factor must then be specified as 
for any other module.  This is done from the Factors dialog (Fig. 6-51, at 
right), accessed from the Lifecycle Window by selecting the “Lifecycle 
Factors” option from the Lifecycle menu.  As is the case with all other module 
factors, a Parameter, Function or Process may be used for any particular 
lifecycle factor.  Using a lifecycle factor in a lifestage process is as simple as 
selecting a Direct function as a process component and using the desired factor 
as its independent variable. 
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6.23 Other Uses of the Lifecycle Module 

Note that lifecycle modules can be used to model phenomena that are not 
actual species lifecycles.  One example is the case where the degradation of 
some specified resource needs to be modelled.  This could be achieved by 
creating a lifecycle where one lifestage represents the resource and another is a 
degraded resource.  Transfer would be the transition of an available resource 
into a degraded resource.  The immigration process could be used to introduce 
the resource into the lifecycle. 

Although the “Event” module (see The Event Module, page 127) is designed to 
cope with most types of management events (including decay of chemical 
treatment), there may be instances when it is not flexible enough to cope with a 
complex type of management.  The Lifecycle then provides an option for 
dealing with this situation.  Often, a single-stage lifecycle can provide the extra 
flexibility to deal with such a situation. 
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7. Model Input Modules 

7.1 The QueryUser Module 

The QueryUser module allows the user to set values at the beginning of a 
simulation for a number of “output variables” whose values do not change 
during a simulation (e.g. Latitude, Cost of Pesticide, etc).  These variables are 
therefore very similar to parameters, but their values are not kept in the 
parameter file (see Simulator Guide). More than one QueryUser module is 
allowed per model, and as many values as required may be supplied in each 
QueryUser module.  No input variables are needed for the module.  

Fig. 7-1  Query User Module Dialog box with the Output variables dialog box. 

 

 To add output variables 

1. Left click the Outputs button in the module dialog.   
2. To create an output variable left click on the New button in the 

Outputs dialog box. This will create a new output variable for the 
module with a generic name derived from the module’s name.   

3. To use the new variable, left click on the Select button and you will 
be able to Rename the variable.   

The “default” value is the value used for that variable in a simulation if no 
actual value has been set within the Simulator.  If the “default” value is left 
empty the value must be set within the Simulator otherwise a simulation is not 
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possible.  The “Minimum allowed value” and “Maximum allowed value” sets 
the Range that the variable can be changed to within the Simulator by a user. 

Note that if the module has been set to use sub-populations, the output dialog 
will appear exactly the same in the Builder.  However, the user will be able to 
set different values for each sub-population in the Simulator. 

The Query User module could be used to provide the Latitude for subsequent 
use by a Daylength module or the module could be used to read in single 
temperature values for simulations that use constant temperature. 

7.2 The QueryUser/Discrete Module 

The QueryUser/Discrete module is very similar to the QueryUser module, in 
that it allows the user to set values at the beginning of a simulation for a 
number of variables.  The difference is that the variables in the case of the 
QueryUser/Discrete modules may take only a defined set of discrete values.  
Each of these discrete values is labelled with a name.  It is, therefore, useful in 
restricting inputs to sensible values.  For example, we may allow a user to 
choose a herd size of 1, 2, 3, 4 or 5 animals in a cattle parasite model.  Here 
obviously, the fractional values make no sense, and cannot be used.  Another 
example is where we have 3 herbicides that can be used against a weed, and 
which cause known mortalities of 96%, 92% and 87.5%, respectively.  The 
QueryUser/Discrete module can be used to allow users of the model to pick the 
herbicides by name and have the corresponding mortality rate automatically 
used.  More than one QueryUser module is allowed per model, and any 
number of output variables may be supplied in each QueryUser module, with 
no restriction on the number of values available for each variable.  No input 
variables are needed for the module. 

Output variables are added to the module in the same way as for the 
UserQuery module (Fig. 7-1).  An output variable must have been added 
before its list of values can be specified. 

Fig. 7-2  QueryUser/Discrete Module Settings Dialog box 
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 To specify a set of values for an Output Variable 

1. Left click the Settings button in the module dialog to obtain the 
module’s Settings dialog (Fig. 7-2).   

2. Select the required Output Variable from the drop-down list 
(obtained by clicking on the small button at the right of the Variable 
box).   

3. To add a new valid value-name pair for that variable, click on the 
Add button and specify the name and its associated value (for 
example, Zebu and 0 as shown in the dialog above).  Note that no 
two names may be the same within each Output Variables set, but 
values may be duplicated. 

4. Set a default value (i.e., the value to be used in the Simulator if the 
model user does not explicitly set a value) by selecting the required 
default in the Values list and clicking the Default button.  An 
asterisk in front of the name indicates the currently set default value. 

If the “default” value is not specified, the value must be set within the 
Simulator otherwise a simulation is not possible.  Name-value pairs can be 
changed or deleted by selecting the required pair in the Values list and clicking 
the Edit or Delete buttons, respectively. 

7.3 The QueryFile Module 

Within the Builder, a QueryFile module at first appears the same as the 
QueryUser module.  Like that module, its output variables cannot change 
within a simulation run.  The main difference is that a QueryFile module can 
read the value of its variables from files as well as the keyboard.  For example, 
it could be used to read Latitude from meteorological data files.  If the file 
were changed between simulations (because the simulation is being run for a 
different location), a new Latitude value would automatically be read in from 
the new file.  Like all data input modules, the QueryFile module has to be 
initialised within the Simulator.  The QueryFile module can be linked to a 
specific DataFile or Metbase module when it is initialized within the 
Simulator, and it then reads its variables from whatever file is being accessed 
by that module. 

 To create a new output variable for the module 

1. Left click on the “New” button in the Output Variables dialog.   
2. To use the new variable, left click on the Select button and you will 

be able to Rename the variable. 
In the Simulator, a QueryFile module operates just like a QueryUser module 
for those variables whose value is input from the keyboard.  For variables 
whose values are read from a file, however, any default values supplied using 
the Output Variables dialog are ignored, and the positions of the 
corresponding values in the file need to be specified. 

Initialization is done in the Model Simulator.  
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The QueryFile module could be used to easily read in variables that change 
between locations such as soil pH, latitude, plant biomass and number of 
plants. 

Fig. 7-3  QueryFile Module dialog box and Output Variables dialog box. 

 

 

7.4 The DataFile Module 

The DataFile module allows you to read in a series of values from a file at 
each timestep during a simulation run.  There is no limit to the number of 
variables that can be read in per module, and more than one DataFile module 
is allowed per model.   

The module differs from the QueryFile module in that the DataFile module 
reads in a sequence of data for each variable while QueryFile only reads in 
one value per variable for each simulation. 

The input variable (Simulation Date) can be linked to the Simulation Date 
variable provided by the Timer module.  If this is done, the sequence of dates 
in the associated file will be checked during a simulation run.  Alternatively, 
the ‘Link for selected variable’ can be left as ‘(none)’, in which any date 
values in the file being read during a simulation will be ignored. 

There is no requirement in DYMEX that the timestep of the model (set in the 
Timer module) and the timestep of data files must be the same.  The DataFile 
module will interpolate or average values as required if these timesteps are 
different.  This is discussed in more detail in the Simulator User’s Guide. 
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Fig. 7-4  The Input Dialog from the DataFile Reader Module. 

 

The output variables from this module correspond to the data items to be read 
from the associated file.  These variables are created and named in the 
Builder, but the association with actual columns of data in a particular file is 
made during module initialization in the Simulator (as each run could 
potentially use a different file).  See the section on initialisation of the DataFile 
module in the appropriate Simulator Chapter.  

 To add and set up a DataFile module 

1. Add the DataFile module by selecting the Model/Add Module… 
menu item and choosing DataFile. 

2. Double click on the new DataFile module in the Component 
Window. 

3. If the module is to be linked to the Timer’s “Simulation Date” 
variable, left click on the Inputs button and select Simulation Date 
from the drop-down box at the right of the dialog. 

4. Go back to the DataFile module dialog box and left click on the 
Outputs button. 

5. Left click on the New button to add the variables needed.  Give the 
variables appropriate names by using the Rename button.  If 
needed, also specify the maximum and minimum values that each 
variable can take.  These values are used by the Simulator to check 
the file for data errors.  In addition, the variables can be described in 
the Comment field – this description can aid the user of the model in 
correctly setting up the data file. 
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Fig. -7-5  Example data that could be read from a file with the data  file reader 
(highlighted grey). 

 

The Data File Reader module could be used to read in host availability for a 
pest insect.  Within a text file, the presence of different hosts could be listed at 
different times of the year.  For example (Fig. 7-6), two hosts exist for the pest 
and they appear at different times of the year: the text file could consist of 2 
columns of values with 1s in the columns when the host is present and 0s when 
it isn’t.  

Fig. 7-6  Example file with host presence /absence data. 

 

 

7.5 The Meteorological Data File Reader Module (Metbase) 

The Meteorological Data File Reader module (MetBase) is a specialised 
DataFile module.  It has six pre-defined output variables, which are Minimum 
Temperature, Maximum Temperature, Rainfall, 9am Relative Humidity, 3pm 
Relative Humidity and Evaporation (in that order).  Additional variables can 
be added if required. 

The input variable, Simulation Date, and its usage is the same as for the 
DataFile module described in the previous section. 

The six predefined output variables are listed in the Output Variables dialog 
box and can be selected and renamed if required.  Maximum and minimum 
allowed values, and a description of each variable can be supplied in the same 
way as for the DataFile module. 

 

What is the 
meteorological 

data file 
reader 

module? 

Input 
variables 

Output 
variables  



Model Input Modules 

108 

Fig. 7-7  Metbase Output Variables Dialog box. 

 

There are two main reasons why MetBase should be used rather than DataFile 
for reading meteorological data.  Firstly, the MetBase module is aware that 
rainfall and evaporation are recorded in the file as a total for the corresponding 
data timestep while the other preset variables are recorded as averages.  If 
interpolation or aggregation of data needs to be done because the model and 
data timesteps are different, this is handled correctly without the need to set 
this up in the Simulator first.  Secondly, the MetBase module does a look-
ahead read of the next day’s minimum temperature.  This means that if this 
minimum temperature variable is used as input to a Circadian module 
(Section 9.1), that module can use the appropriate minimum temperatures for 
the two extremes of each day’s cycle. 

 To add and set up a MetBase module 

1. Proceed through steps 1 to 4 described for setting up the DataFile 
module. 

2. From the predefined variables, select those that are required by 
clicking on each in them in the list, and then clicking on the Select 
button.  If required, rename the variable by clicking on the Rename 
button.  The permissible range of each output variable can be set by 
entering values into the Maximum and Minimum text boxes, and a 
description can be provided in the Description box. 

3. If extra variables need to be read from file containing the 
meteorological data (for example, Radiation), click on the New 
button to add a new variable.  The steps for selecting, renaming and 
specifying limits for this variable are the same as for the pre-defined 
variables. 
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Refer to the description of the DataFile module in the previous section for 
more information about usage of this module. 

The Metbase module could be used to read in rainfall data to estimate survival 
of various lifestages.  To do this, select “Rainfall” as an output variable within 
the Outputs dialog box.  Go to the lifecycle and the lifestage that the mortality 
process linked to rainfall is to be added to, open the Mortality process, select 
continuous mortality and add a function component.  Go to the Independent 
Variable drop down box and select “Rainfall”.  Choose the shape of the 
function and set the parameters. 

7.6 The Climate Database (MetManager) Module 

The MetManager module is used to obtain long-term average meteorological 
data from the MetManager database.  The database stores monthly or weekly 
values of various climatic variables, including maximum and minimum daily 
temperatures, rainfall and 9am and 3pm relative humidity.  These data can be 
accessed through the MetManager module, which automatically converts the 
data into the appropriate timestep for use by the model (using simple linear 
interpolation).  A common use of this module is to obtain climatic variables for 
many locations across a region for use in “equilibrium” type simulations.  The 
usual caveats that apply to the use of long-term average (smoothed) data in 
situations where a model’s parameters have been fitted using actual met data 
must be kept in mind. 

Fig. 7-8  MetManager Output Variables Dialog box. 

 

The MetManager module uses a single input variable, Day of Year.  This 
variable is generally derived from the corresponding Timer module output. 
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The following output variables are available from the MetManager module.   

Average Daily Minimum Temperature (degrees Celsius) 
Average Daily Maximum Temperature (degrees Celsius) 
Rainfall  (mm) 
Average 9am Relative Humidity  (%) 
Average 3pm Relative Humidity  (%) 
Latitude  (degrees) 
Longitude  (degrees) 

Note that all of these variables except 3pm relative humidity are available for 
each location in the database.  For those locations that do not have 3pm 
humidity data, it is calculated from the 9am relative humidity using the 
formula, 

3pm RH = 9am RH × 0.85 

Output 
variables  
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8. Data Manipulation Modules 

8.1 The Expression Module 

The Expression module is used to combine values of different input variables 
in some way to produce a single output variable.  The input variables can come 
from any module, e.g. Metbase, Lifecycle, etc.  As many input variables as 
required can be used.  More than one Expression module is allowed per 
model.  Expression modules are able to use sub-populations. 

Fig. 8-1  The Expression Module’s input dialog box. 

 

Input variables are added to the module and connected to their source variables 
in the input dialog box (Fig. 8-1).  As many variables as required can be used.  
The Negate and Invert options can be used to manipulate the value of the 
corresponding input variable before its use in the nominated expression 
evaluation.  If Negate is selected, the value used in the expression evaluation  
is actually –x, and if Invert is selected, it is 1/x. 

The Settings button is used to specify how the values of the input variables 
should be combined to yield the output variable value and how to treat 
arithmetic overflow condition.  The available choices expressions and and their 
results are listed in Table 8-1.  If one or more of the inputs have the Invert 
option set, it is possible for one of those inputs to be zero and thus cause an 
arithmetic error during model execution (division by zero).  To allow the user 
to specify the action that should be taken in such an eventuality, the Handling 
Division By Zero section of the dialog becomes available if any input has 
Invert set.  One of three actions may be specified; (a) terminate the simulation, 
(b) Add 0.0001 to the input value (divisor), thus making it non-zero, or (3) set 
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the output variable of the module to “undefined”.  Note that if the output 
variable is used as input to another module, option (c) must not be selected.   

Table 8-1  Names of expressions and the summary of the expression. 

Name Expression 

Sum V = A + B + C + … 

Product V = A × B × C × … 

Complement Product V = 1- (1-a) × (1-b) × (1-c) × … 

Minimum V = Minimum (A, B, C, …) 

Maximum V = Maximum (A, B, C, …) 

Average V = (A + B + C + …)/N 

Range V = max(a,b,c, …) – min(a,b,c, …) 

Fig. 8-2  The Expression module’s Settings dialog box. 

 

As an example, assume mean temperature is needed somewhere in the model 
to calculate a mortality.  An Expression module would be added to the model 
with the Sort Order chosen to ensure that it appears before the module that 
uses the mean temperature.  

 To complete the above example  

1. Add two variables to the Inputs variable dialog box by left-clicking 
on Add Extra Input twice.   

2. Link these variables to Minimum & Maximum Temperature by 
selecting each in turn.   

3. Return to the module dialog by clicking Ok, and select Settings.  
Then select Average from the Settings dialog.  Note that the 
Handling Division By Zero options are all disabled because 
neither input is inverted. 

4. Go to the Outputs dialog box, select the Expression Output 
variable, and rename it to Mean Temperature. 
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Fig. 8-3  Example Expression Module diagram. 
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Another use for the Expression module could be to add a constant increment 
to a temperature variable (Temperature) read using a DataFile module (Fig. 
8-3).  To do this, add a Query User module, which will be used to supply the 
value of the constant (Increment).  Then add an Expression module taking 2 
inputs and link one to the Temperature and the other to the Increment variable.  
In the Settings dialog box set the expression operation to Sum. 

 

8.2 The Equation Module 

The Equation module is a module that has one output variable, up to 9 input 
variables and up to 9 parameters.  The value of the output variable reflects the 
result obtained by evaluating a user-supplied equation using the values of the 
module’s input variables.  Equation modules are able to take part in a model’s 
sub-population structure. 

The equation can be edited by clicking on the Settings button in the Module 
Window (Fig. 8-4).  The syntax for the equation is the same as that for user-
defined functions generally (see Section 10.2), with the exception that more 
than one independent variable can be specified.  The independent variables are 
designated [x1], [x2] …, up to [x9].  When the equation is evaluated, each 
equation variable will obtain its value from the corresponding variable 
specified (and linked) in the module’s inputs.  Hence, the number of 
independent variables specified in the equation must equal the number of 
module input variables. 

Each equation parameter (designated by [p1], [p2], …) corresponds to a 
module factor.  As such, it may be designated as a model parameter or 
function.  In the latter case, the equation parameter’s value is obtained by 
evaluating the function.  Note that the case of an equation that consists of only 
one parameter and no independent variable (i.e., “[p1]”), the Equation module 
is equivalent to a Function module. 

A number of errors may occur during equation evaluation and these need to be 
handled in some way.  Common examples of such errors are division by 0, 
logarithms of 0 or negative numbers, or equation inputs that are undefined at 
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some time.  The following actions may be specified in response to the 
occurrence of such an error: 

1. Terminate the simulation. 
2. Set the output to a specified value. 
3. Set the output to its value at the previous timestep. 
4. Set the output to a special value that indicates “undefined”. 

Note that in case of option 4, the equation output variable must not be used as 
input to another module or function.  The example shown in Fig. 8-4 shows 
use of option 2, where the sex ratio is set to 0.5 (50:50) for those times when 
there are no individuals in the population.  Note that it would be just as valid to 
use option 4 if the output is not used as input anywhere else. 

As an alternative to setting option 2 in the above example, the error condition 
(i.e., [x1]+[x2] equal to 0) could be caught within the equation definition itself 
using an if(…) or ife(…) function.  In that case, the user should set option 2.  

Fig. 8-4  The Equation Module’s “Settings” dialog box.. 

 

To complete specification of an Equation module 

1. Left click on the Settings button in the Module Window, which 
opens the Equation Setup dialog box.  

2. Type the required equation into the edit box (Fig. 8-5), using the 
syntax described in Section 10.2. 

3. Decide what error conditions may occur in evaluating the equation 
during the simulation (for example, division by 0) and how such 
conditions should be handled.  Select the required action from those 
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listed in the Action for evaluation error box.  Click on Ok to close 
the dialog and return to the Equation module dialog. 

4. Click the Inputs button to open the Input Dialog. Select each input 
variable in turn and link to one of the available variables listed in the 
drop-down box on the right of the dialog.  Click Ok to return to the 
Equation module dialog box.  

5. Open the Outputs dialog box, select the variable, and give it an 
appropriate name using the Rename button.  Return to the 
Equation module dialog box.   

6. Click on the Factors button to open the Factors dialog box. 
7. Select each factor (equation parameter) listed in window at the left 

in turn.  Click on the Set Parameter button to specify a parameter 
for that factor, or the Set Function button to specify a function.  The 
former will open the Parameters dialog, where the parameters range 
and default value can be set.  The latter will lead to the function 
specification dialog, where the appropriate function must be from the 
drop down list (e.g. Exponential), and the Independent Variable is 
selected. 

 

8.3 The Counter Module 

The Counter module is a specialized type of Equation module.  In this 
module, the result of the equation evaluation is not used directly as output, but 
as a condition (gate) for incrementing a counter.  During every timestep that 
the equation evaluates to a positive value, the counter is incremented by a 
specified value.  During all other timesteps, the counter’s value remains 
unchanged.  The counter is reset to 0 at the start of a simulation.  The Counter 
module’s output at any time reflects the current value of the counter.  The 
Counter module is able to take part in a model’s sub-population structure. 

The input and output variables are set up exactly as for the Equation module 
(Section 8.2).  The “Settings” dialog box is also very similar – the form of the 
equation must be specified, and the Action for evaluation error selected.  
Note that only Terminate and Set to Undefined are available for the latter as 
options for the Counter module.  The only extra item that needs to be specified 
is the increment to use for the counter.  This is typed into an edit window 
below the equation definition. 

An example of the use of a Counter module would be to count the number of 
times during a simulation the population of adult flies exceeded a threshold of, 
say, 1000.  In that example, the input variable would be the “Number of Adult 
Flies”, the equation to be used would be “y = [x1] > 1000”, and the counter 
increment would be set to “1”. 
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8.4 The Function Module 

The Function module is a simple module that has no input variables, one 
(Function) to five (Function5) output variables, and a single factor 
corresponding to each output variable.  When a Function module is created, 
the number of outputs must be known – i.e., it is not possible to change (say) a 
Function2 module to a Function3 module without deleting the existing 
module and creating a new one in its place.  Multiple output Function modules 
behave exactly the same as an equivalent number of single output Function 
modules – the multiple output capability merely allows the module count to be 
reduced by grouping together logically related functions.  Any of the Function 
modules can take part in a model’s sub-population structure. 

In its simplest form, the factor is a Parameter and the output variable reflects 
the value of that Parameter.  Then the module behaves in much the same way 
as a QueryUser module, with the difference that the value of the output 
variable is modified from the Parameter dialog rather than a module 
initialization dialog.  Generally, however, the parameters in a Function 
module will be replaced with functional relationships (see Section 2.3).  In this 
case, the module has implicit input variables (the independent variables in the 
functional relationships), and a number of parameters appropriate to the 
Function Templates used. 

Any of the pre-defined functions may be used within the Function module.  
For a list of these functions see the Reference Guide or Help System.  If none 
of the pre-defined functions are suitable, you can define your own function and 
then use it within this module.  See Section 10.1 for details on how to do this. 

Fig. 8-5  The Function Module’s Factor dialog box. 
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A Function module has as many Factors as it has outputs (from 1 to 5).  As 
many Function modules as required may be used in a model.   

The function module could be used to tie mean number of trees to an erosion 
index (ER index) with a linear relationship.   

 To specify a Function module 

1. Create the module by selecting the Add Module menu option from 
the Model menu.  Choose Function to create a module with a 
single output, or Functionn where n is the number of outputs 
required (2 to 5). 

2. Double-click on the module symbol in the Model Components 
window to get to the Module dialog.   

3. Left click on the Factors button and open the Factors dialog box.  
4. Left click on the Set Function button and open the function dialog 

box (Fig. 8-6).  Choose the appropriate function from the drop down 
list (e.g. Linear) and select the Independent Variable (e.g. Number 
of Trees).   

5. Go back to the Function module dialog box and open the Outputs 
dialog box, select the variable, and give it an appropriate name 
(such as Erosion Index) using the Rename button. 

 

Fig. 8-6  A Function dialog box. 

 

A Function module could be used to filter temperature values so only positive 
temperatures are input in to the model using an above threshold function with 
the threshold at zero degrees (Fig. 8-7). 
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Fig. 8-7  An example Function module diagram. 
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8.5 The Running Mean Module 

The Running Mean module has a single input variable.  The modeller 
specifies an averaging period, and then the output variable gives a running 
average (or total) of the input variable taken over that period.  The period is 
specified in module steps (either timesteps, or segments if the module is in 
segmented timestep mode).  The period used includes the current step and the 
(period-1) previous steps.  Fewer steps will be used for averaging or totalling 
at the start of the run.  The module is useful for smoothing variables, where 
values can fluctuate widely from one step to the next.  For example, low 
temperatures may induce diapause in an insect, but rather than use an actual 
minimum temperature value directly, it may be better to use a running mean 
over a period of (say) a week, so that one isolated, unusually cold night is not 
sufficient for the diapause to trigger. 

Setting up this module is very simple – the Settings dialog is shown in Fig. 
8-8.  Only two items need to be specified, the number of steps to be included in 
the period, and whether to average or total over that period. 

Fig. 8-8  The Running Mean Settings dialog. 
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8.6 The Difference Module 

The Difference module is a simple module that has one input variable and one 
output variable.  It has no parameters, nor any user-adjustable settings.  The 
value of the output variable (yt) is the difference between the input variable (x) 
at the current timestep (xt) and at the previous timestep (xt-1).  It therefore 
provides us with the change in the variable between timesteps. 

1−−= ttt xxy  

To complete specification of a Difference module 

1. Click the Inputs button in the Module Window to open the Input Dialog. 
Select the input variable and link to one of the available variables listed in 
the drop-down box on the right of the dialog.  Click Ok to return to the 
Difference module dialog box.  

2. Open the Outputs dialog box, select the variable, and give it an 
appropriate name using the Rename button.  Return to the Difference 
module dialog box.   

 
 

8.7 The Storage Container Module 

The Storage Container module simulates a storage device with a nominated 
capacity (in any unit, eg m3), which is filled (or emptied) using rates 
determined by the input variables and a “Drainage rate” parameter.  If it is 
filled above capacity, the excess overflows, while a minimum storage capacity 
can also be set, beyond which the container cannot be emptied.  Fig. 8-9 
illustrates this module schematically. 

Fig. 8-9  Schematic diagram of the operation of the Storage Module. 

 

Up to 4 input variables may be used.  Each of these inputs is a “Fill Rate”, the 
amount (in the same units as the Storage Capacity) being added to the store 
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during a timestep. 

Two Output Variables are available from this module.  The first, “Current 
Storage” is the current amount in the store, while the second, “Overflow”, is 
the amount lost during the current timestep due to the Storage Capacity being 
exceeded.  These outputs can be in the same units as the Storage Capacity, or 
scaled as proportions of Storage Capacity, as selected by the model builder 
(see below).   

Three factors have to be set by the user.  As usual, the factors can be 
parameters, functions or processes. 

• Total Storage Capacity (permitted range: >0): The total capacity of the 
store, in any required units.  Whatever units are chosen here, the input 
variables must be in the same units. 

• Minimum Storage (permitted range: 0-Total Storage Capacity): The 
minimum level that the store may drop to if filled above that level.  In other 
words, no drainage can occur until this minimum level is reached.  The 
units for this factor must be the same as those for Total Storage Capacity. 

• Drainage Rate: This factor determines the amount of store contents lost 
per timestep.  If the “Method of Drainage application” (see Settings) is 
Direct, then the parameter is in the same units as the Total Storage 
Capacity.  Otherwise, the amount drained from the Storage is evaluated as 
the difference between the current Storage and the Minimum Storage, 
multiplied by the value of the factor. 

One use of this module could be to keep a tally of fuel (dead plant material) in 
a plant population model for determining the intensity of fires.  One or more of 
the inputs could be derived from the Cohort Output “Total Stage Mortality” 
(Table 6-4) of the plant lifecycles. 

 To complete a Storage module 

1. Left click the Inputs button. 
2. Link the Fill1 input by left-clicking on the variables and using the 

drop down menu to find the appropriate variable.  Link as many of 
the other three inputs as required. 

3. Go back to the Storage dialog box and left click on the Outputs 
button. 

4. Select either of the output variables and rename it to an appropriate 
name. Do the same with the other output variable if it is needed.  
Return to the Storage Module dialog box and left click on the 
Settings button to obtain the Storage Settings dialog. 

5. Choose the appropriate Method of drainage application (see 
discussion of Drainage Rate, above).  Then choose how the 
outputs should be scaled - either directly in units of Total Storage 
Capacity (Output Scaling is Off), or as a proportion of the Total 
Storage Capacity (Output Scaling is On). 

Factors 
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Fig. 8-10  Storage module Setup dialog box. 

 

8.8 The Switch Module 

The Switch module is a simple way of combining two or more sets of output 
variables into one single output stream.  The effect is exactly like a multiple 
pole switch, as illustrated in Fig. 8-11.  That example shows a Switch module 
with two output variables.  These output variables are derived from two sets of 
input variables (V1, V2) and (V3, V4).  Each of these sets constitutes an input 
channel.  Either channel can be selected as the source for the output variables 
when the model is run in the Simulator. 

Fig. 8-11  Diagrammatic representation of a 4-input, 2-output Switch model 
showing (a) the first set of outputs selected and (b) the second set of outputs 
selected. 

 

An example where the Switch module may be useful is for models that could 
use meteorological data read either from a DataFile or derived from a 
MetManager module.  The Switch module would then be used to select 
between the two data sources.  Note that the current version of the Switch 
module is implemented in a rather simplistic fashion.  The output variables 
must have names that are different from the input variables (as all these 
variables belong to the model’s global name space).  If, for example, a 
minimum temperature is being supplied to input V1 from a DataFile module 
and to input V3 from the MetManager module, the first output variable from 
the Switch module might be named Minimum Temperature, with the variables 
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V1 and V3 named Minimum Temperature (File) and Minimum Temperature 
(MetMgr), respectively. 

 To specify and set up a Switch module 

1. Create the module by selecting the Add Module menu option from 
the Model menu.  Choose Switch to create the new module and 
add it to the end of the module list. 

2. Double-click on the module symbol in the Model Components 
window to get to the Module dialog.   

3. Click on the Settings button to open the Switch Settings dialog 
box (Fig. 8-12).  

4. Click the Add button to create a new input “source” channel and 
give it a suitable name.  A fuller description of the input channel can 
be provided in the Description panel when the source is selected in 
the list box. 

5. Repeat step 4 for each required source.  The module is currently 
limited to a maximum of 10 source channels. 

6. In the Variables per Source box, specify the number of variables 
that will be provided by each source.  This number is also the 
number of output variables from the module. 

 

Fig. 8-12  The Switch module Settings dialog box. 

 
 

7. With the sources correctly set up, return to the module dialog box 
and click on the Inputs button.  The correct number of inputs will be 
shown in the left panel, and these can be connected to the 
appropriate variables in the usual way.  If there are m sources and n 
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input variables per source, the input variables are listed in the 
following order 

Source 1, Variable 1 
Source 1, Variable 2 
… 
Source 1, Variable n 
… 
Source m, Variable 1 
Source m, Variable 2 
… 
Source m, Variable n 

8. Return to the module dialog and click on the Outputs button.  
Select, rename and document the output variables as appropriate. 

 

Always check the linkage of input variables when modifying a previously set 
number of variables per source, as input variables may have been reassigned to 
the wrong source. 

 

 

9. Specialised Modules 

9.1 The Circadian Module 

The Circadian module is designed to generate a variable that describes the 
diurnal change in the value of some quantity.  This is particularly useful in 
situations such as the calculation of temperature-based development rates, 
where input data is available as minimum and maximum daily temperatures. 

Variables in DYMEX generally are assigned a single value for each timestep.  
The Circadian module output variable is different in that it has a set of values 
(the exact number is determined by the modeller).  For example, with the 
default 24 steps, there is one value for every hour over the period of a day.  
These values are obtained by interpolation, using one of 3 functions selected 
by the user.  When this output is then used as input to a function, the function 
is evaluated for each of these values separately, as if the model had a timestep 
of 1 hour.  When the output variable is used directly as input to another 
module, its average value over the 24 segments is used. 

Two types of Circadian modules are available in DYMEX (Circadian and 
CircadianAdjust).  These operate almost identically, the only difference being 
that the CircadianAdjust module has two factors that allow the supplied Daily 
Minimum and Daily Maximum values to be adjusted before their use in the 
calculation of the daily cycle.  This is done via two factors.  The first, 
Adjustment for Minimum, is evaluated during model execution and added to 
the Daily Minimum.  The second, Adjustment for Maximum, provides a 
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similar adjustment for the Daily Maximum.  In the following description, any 
procedure or explanation that relates only to the CircadianAdjust model will 
be qualified with the phrase [CircadianAdjust only].  

The CircadianAdjust module could be used to estimate the daily cycle of 
temperatures in the soil, by using the daily maximum and minimum air 
temperatures as inputs.  The two factors would be used to adjust these inputs to 
provide daily soil maximum and minimum temperatures. 

The module takes as its input the minimum and maximum values of the 
quantity during the timestep, as well as daylength.  While the minimum and 
maximum values are necessary, daylength is not used for the Sine cycle shape.  
Daylength is used only in the Composite (Sine+Sine) and Composite 
(Sine+Exponential) (see Settings below).  The next day’s minimum (if 
available) will be automatically used for calculating the shape of the cycle after 
the maximum for the Composite (Sine+Sine) and Composite 
(Sine+Exponential) shapes. 

Multiple Circadian modules are allowed in a model. 

Fig. 9-1  Circadian module dialog box and its input dialog box. 

 

 To complete a Circadian module 

1. Left click the Inputs button. 
2. Link Daily Minimum & Maximum Value and Daylength if needed by 

left-clicking on the variables and using the drop down menu to find the 
appropriate variable (e.g. Maximum and Minimum Temperature). 
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3. [CircadianAdjust only] Go back to the Circadian dialog box and left click 
on the Factors button.  Set the Adjustment for Minimum and 
Adjustment for Maximum factors as required.  Note that the value of 
each factor will be added to the Daily Minimum and Maximum, 
respectively. 

4. Go back to the Circadian dialog box and left click on the Outputs button. 
5. Select the Daily Cycle variable and rename it to the appropriate name (e.g. 

Daily Temperature Cycle). 
6. Go back to the Circadian dialog box and left click on the Settings button. 
7. Choose the appropriate Cycle Shapes (e.g. Sine). 
8. Select the required number of segments DYMEX should use to 

approximate the selected Cycle Shape (12, 24 or 36). 
 

Fig. 9-2  Circadian module Setup dialog box. 

 

 

The Circadian module can be used to estimate 2-hourly temperatures during a 
day to calculate how many day-degrees are experienced by a lifestage.  
Alternatively, it could be used to model daily fluctuations in relative humidity.  
Note, however, the assumptions that must be satisfied when using other cycle 
shapes than the Sine. 

Below in Fig. 9-3 is an example of using the Circadian module to model daily 
cycles in relative humidity.  9am RH has been used as the Daily Maximum 
Value, 3pm RH has been used as the Daily Minimum Value and Daylength is 
left unlinked.  

The Settings button allows you to change the cycle within the Circadian 
module, as well as the number of segments to be used each day.  There are 
three cycle shapes available.  Both the Composite (Sine+Sine) and Composite 
(Sine+Exponential) shapes assume that a minimum occurs before a 
maximum, and that the maximum occurs before sunset.  For the descriptions 
that follow, the following definitions are assumed (refer to Figure 9-4): 

 

 

Settings 
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Fig. 9-3  An example circadian module using RH.  

 

 

a = the time (in hours) between mid-day (halfway between sunrise, tr, and 
sunset, ts) and the time when the modelled quantity is at its maximum (tmax). 

b = the time (in hours) between the time when the modelled quantity is at its 
minimum (tmin) and sunrise (tr). 

Daylength is the number of hours between sunrise (tr) and sunset (ts). 

 SINE is a simple sine curve whose period is 24 hours.  Note that the length 
of the increasing and decreasing parts of the cycle is not affected by 
daylength, each being always equal to 12 hours.  This can give rather poor 
approximations of the daily change of quantities that are affected by 
daylength (such as temperature) over the course of a year, especially in 
locations far from the equator. 

 COMPOSITE (SINE+SINE) is two sine curves joined together at the 
maximum value.  The first curve models the rise in the quantity from the 
day's minimum value to its maximum, with a rise-time (or half-period) 
equal to the time between minimum and maximum.  The second curve 
models the fall from maximum to subsequent minimum, with a half-period 
equal to the interval between these points.  The model uses values of 1.86 
and –0.17 for a and  b, respectively.  See Wann, M., Yan, D. & Gold, H.J. 
(1985) Evaluation of three models or daily cycle of air temperature. Agric. 
For. Meteorol., 34: 121-128 for more details. 

 COMPOSITE (SINE+EXPONENTIAL) uses a portion of a sine curve 
from the first daily minimum to sunset, joined to an exponential decay 
function from sunset onwards.  The sine curve’s period is chosen so that its 
maximum corresponds to the modelled variable’s maximum, and its 
inflection point corresponds to the variable’s minimum.  The exponential 
(decay) curve is used to model the fall in value of the quantity being 
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modelled from sunset to sunrise.  The model uses values of 1.86 and –0.17 
for a and b, respectively, and 2.2 for the decay coefficient of the 
exponential portion of the curve.  See Parton, W.J. and Logan, J.A. (1981) 
A model for diurnal variation in soil and temperature. Agric. Meteorol., 23: 
205-216, for a detailed description of this model. 

Figure 9-4  Sine (            ), Composite (Sine+Sine) (            ) and Composite 
(Sine+Exponential) (            ) shapes, in relation to daylength and daily extremes 

 

When using circadian output variables to drive functions it must be 
remembered that 24 calculations are performed each model timestep to obtain 
the final function output (if using 24 segments in the cycle).  Assume a model 
has a “Linear above Threshold” function driven by daily temperature cycle.  If 
the threshold of the function is 10° and the mean temperature for the day is 7°, 
it is nevertheless possible that the output from the function will be greater than 
zero for that day.  This would occur if the maximum temperature for the day 
exceeded the threshold of the function.  The proportion of the day above the 
threshold temperature will have an influence on the output of the function. 

 

9.2 The Event Module 

The Event module allows for model operations that are triggered on set dates 
or by set thresholds.  These operations would include management actions 
such as pesticide spraying and harvesting of a crop.  The Event module has up 
to four input variables, and a varying number of output variables.  

Several types of Event module are available.  The simplest Event module has 
one Event Output Variable output and a corresponding factor (parameter, 
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function or process) that controls the way the output variable reacts to the 
event’s occurrence.  Other Event modules with 2 to 5 Event Output Variables 
are available (named Event2 to Event5, respectively), with each of these 
modules having one factor determining each Output Variable’s response.  A 
further module, EventWithDelay, is similar to a simple Event module with a 
delayed event response, the length of the delay being controlled by a factor.  In 
this section, any feature that applies only to a particular type of Event module 
will be noted. 

Any of the Event modules can make use of the model’s sub-population 
structure.  To do this, the “Use sub-populations” in the Module dialog must 
be checked.  When the model is subsequently run in the Simulator, different 
event triggers will be settable for the different sub-populations. 

An event is triggered when the appropriate date or threshold is reached during 
a simulation run.  A single parameter associated with the Event module, and 
the Event Duration Override setting, control the precise way in which the 
event is applied and runs its course after it has been triggered. A function or 
process can be substituted for the parameter to achieve effects such as an 
exponentially declining event effect.  The Event Duration Override setting 
will force termination of the event. 

Fig. 9-5  An illustration of three types of Events (showing the Event Variable 
output variable variable). 
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Event modules have four possible input variables: Day of Year, Simulation 
Date, Threshold, and Cost per instance.  If Day of Year or Simulation Date 
are used, they need to be linked to the appropriate Timer module variables.  
Threshold is used when occurrence of an event depends on the value of a 
model variable (e.g. we may want to spray a pest only when numbers exceed a 
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predefined threshold).  See the paragraph on Settings below for further 
information on Threshold conditions.  Cost per instance is the cost of each 
occurrence of an event (for example, the cost of one spray application).  If no 
variable is assigned to Cost per instance, it is assumed to be equal to 1. 

Fig. 9-6  Event module’s dialog box. 

 

Each response factor is a Parameter, a Function (response function) or a 
Process.  If the Parameter option is used, the corresponding output variable 
(Event Variable) will reflect the Parameter’s value after each event is 
triggered.  If the Function or Process option is used the value of Event Variable 
at any timestep after an event has been triggered will be determined by the 
value of the current value of that factor. (See Section 2.3 for more 
information). 

In the EventWithDelay module, the Delay Time factor can be a parameter 
(giving a fixed delay time), or it can be variable when a function or process is 
used.  This factor’s value is interpreted as the number of days (rounded 
upwards) that the event action will be delayed from the day that the event 
trigger occurs.  The event with delay module is useful for simulating events 
when the decision to apply the event must precede it, such as when a decision 
to burn a paddock involves destocking ahead of the fire to allow sufficient fuel 
to accumulate.  In this case, the factors driving the decision to burn (e.g., weed 
presence) may occur a year in advance of when it is logistically feasible to 
burn. 

When you create a response function for the event there is a local variable 
available that is produced by the event: Days Since Event.  This variable could 
be used to model the lessening effect of a treatment after the day of 
application. 

 
Factors 
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Event Duration Override is used to force termination of an event.  Without 
this override, and if a Parameter controls the Event Effect, the event will be 
effectively continuous (i.e., the triggering of the event acts like a switch (Fig. 
9-5).  To revert to the pre-triggering state you must set the Event Duration 
Override to the number of days you want the event to last.  In multi-output 
Event modules, the Event Duration Override resets every Event Effect output 
to its pre-triggered state. 

The Threshold Event Trigger Condition defines what type of condition is 
used to trigger the occurrence of an event, and what type of condition will 
terminate it.  On conditions (i.e., conditions that initiate an event action) and 
Off conditions (conditions that terminate an event action) may be specified.  In 
Fig. 9-7 value crosses Threshold downwards indicates that the event will 
only be triggered during timesteps when the Threshold variable’s value 
crosses over a value (which is defined in the Simulator) in a downward 
direction.  Similarly, any current event action will be terminated when the 
Threshold variable’s value crosses over another value (also defined in the 
Simulator) in an upward direction.  The Off trigger condition can be disabled 
(i.e., set to not used), in which case the model’s user cannot turn an event 
action off using a threshold condition. 

Fig. 9-7  Event module’s Settings dialog box. 

 

The Event Occurrence Flag Value is the value that is used for the “Event 
Flag 1” output on those timesteps when an event action is triggered (see 
Output Variables below), and is set to 1 by default. 

If two or more event actions are triggered in close succession, so that the first 
response has not yet “timed out”, the resulting response functions from each 
action must be combined in some way to give a single value to the Event 
Variable output.   The Overlapping Event Action setting specifies how this 
situation is treated, with a choice of several ways of combining the responses. 

Table 9-1 shows the output variables available for each type of Event module 
and their descriptions.  If a variable is not available in a particular module, its 
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output position is used by the next available variable (i.e., there is no “hole” in 
the output variable list).  For example, in the Event2 module, the output 
variables are: Event Variable 1, Event Variable 2, Event Cost, Event Flag 1, 
and Event Flag 2. 

Each of the Event Variables describes the response to the corresponding 
factor.  If the Event module describes a pesticide application, this variable 
could be used to drive the mortality in one or more lifestages, for example.  
The Event Cost is used to calculate the “cost” of the event. Its value is equal to 
the input variable Cost per instance during those timesteps that an event is 
triggered, and is 0 at all other times.  This output could be used to sum the cost 
of the pesticide application over the duration of the simulation.  The Event 
Flag outputs can be used to indicate that an event occurred.  The first of these 
is especially suited for this purpose, as it takes the special value “undefined” 
when the event is not being triggered.  In tables and point graphs produced in 
the Simulator, “undefined” values produces a blank field, which clearly 
highlights the occasions when event triggers occur.  Note, however, that 
because of these “undefined” values, the Event Flag 1 output is not suitable 
for input to another module or function.  The Event Flag 2 output should be 
used for this purpose (it could be used, for example, to count the number of 
times a threshold event was actually triggered during a simulation). 

Table 9-1  Event Output variables and their descriptions. 

Output variables Description 

Event Variable 1 Describes the effect of the event due to event action factor 1. 

Event Variable 2 Describes the effect of the event due to event action factor 2.  
Available only in modules of type Event2, Event3, Event4 and 
Event5. 

Event Variable 3 Describes the effect of the event due to event action factor 3.  
Available only in modules of type Event3, Event4 and Event5. 

Event Variable 4 Describes the effect of the event due to event action factor 4.  
Available only in modules of type Event4 and Event5. 

Event Variable 5 Describes the effect of the event due to event action factor 5.  
Available only in modules of type Event5. 

Event Cost Equal to the input variable Cost per instance during those 
timesteps that an event is triggered, and is 0 at all other times. 

Event Flag 1 Equals the value specified for the Event Occurrence Flag 
(Settings dialog) for those timesteps that an event is triggered, 
and is undefined at all other times. 

Event Flag 2 Equals 1 for those timesteps that an event is triggered, and 0 at 
all other times. 

 

 To complete an Event module 

1. Left-click on the Inputs button. 
2. Link Day of Year and Simulation Date to the relevant variables supplied 

by the Timer module by selecting each variable in the Inputs to be linked 
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box and using the drop down box, Link for selected variable, to link the 
variables. 

3. Link the Threshold variable to the appropriate variable (e.g. Total Number 
of Adults) from the drop down box if it is required. 

4. If needed, link the Cost per instance variable to an appropriate variable – 
this will often be an output from a UserQuery module. 

5. Go back to the Event dialog box and left click the Outputs button. 
6. Select the output variables by left-clicking the Select button.  Then rename 

the variable to relevant name by left-clicking the Rename button. 
7. Go back to the Event dialog box and left click the Factors button and set 

the factor that determines the effect of each output event variable. 
8. If the module is of type EventWithDelay, set the factor that determines the 

delay between the event trigger and its action. 
9. Go back to the Event dialog box and left click the Settings button. 
10. In the Settings dialog box, change any of the module settings if the 

defaults are not adequate. 

An example of a constant event with event duration override: An event that is a 
spray application affects the survival of an organism for 2 days then has no 
effect.  The input variables must be set with both Simulation Date and Day of 
Year being linked.  Threshold could be linked to the number of organisms in 
a particular lifestage.  The output variable must be selected and ideally 
renamed to something meaningful, e.g. Spray Effect.  The spray has a constant 
concentration over 2 days, therefore a “Parameter” is selected and the default 
value is set to the proportion mortality per timestep from contact with the 
spray.  Since the spray only affects the population for 2 days the Event 
Duration Override  (Fig. 9-7) must be selected and set to 2 days. 

The Event module can be used to simulate any event that occurs on user-
selected dates or in response to a threshold, such as spraying of a population of 
insects, harvesting of animals or plants or occurrence of a fire. 

Fig. 6-33 gives an example of an event whose effect is determined by a 
function.  This example also involves a spray treatment, but, instead of an 
abrupt halt to the effect, there is a gradual decline in the residual effect of the 
chemical. 

The input variables: Simulation Date and Day of Year should be linked to the 
corresponding variables supplied by the Timer module.  The output variable 
must be selected and renamed.  Within the Factors dialog box choose a 
function and set the driving to variable Days since Event.  From the function 
list, choose the “Exponential Decay” function.  The parameters must be set for 
this function, including the initial effect of the spray, the number of days after 
the event that the effect of the spray starts to decline and the rate of decline. 

In Fig. 9-8 the threshold value that is used to trigger an event can come from 
any one of the modules in the model.  The number of individuals in a particular 
lifestage, a certain amount of rainfall, a particular temperature, etc may trigger 
the event. 
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Fig. 9-8  An Example Event module diagram. 
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9.3 The Daylength Module 

The Daylength module calculates the number of hours between sunrise and 
sunset given the Latitude of the location and either the Day of Year or 
Simulation Date (or both).  Its second output variable (Day Length Change) 
gives the change in daylength that has occurred between the current timestep 
and the previous timestep (in hours).  This will be positive if daylength is 
increasing and negative if it is decreasing.  Simulation Date should be 
provided as input if the Day Length Change output is used, or that output will 
contain small discontinuities at the boundaries between normal and leap years.  
Commonly, either a Query User or Query File module provides the Latitude 
input required by the module. 

 To complete the Daylength module 

1. Left click on the Inputs button and within Inputs dialog box link the 
Latitude, and either the Day of Year or Simulation Date (which are 
obtained from the Timer module). 

2. Go back to the Daylength dialog box and left click on the Outputs button. 
3. Select the Day Length variable by left-clicking on the Select button.   

 

The Daylength module is commonly used to provide daylength for the 
Evaporation module but could be used for plant growth calculations, circadian 
temperature cycles, etc. see The Circadian Module, page 123 & Plant Growth 
and Development, page 63.  The Day Length Change output is useful in 
triggering diapause in insects due to (say) decreasing daylength.   
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Fig. 9-9  Daylength Output variables dialog box. 

 

Fig. 9-10  Example Daylength module diagram. 
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9.4 The Evaporation Module 

The Evaporation module calculates the pan evaporation (in mm/timestep) 
using the formula from Fitzpatrick, E.A. (1963), J. Appl. Meteorol., 780 as 
adapted by Sands, P. and Hughes, R.D. (1976), Agricultural Meteorology,161.  
This algorithm is reasonable for timesteps of 7 days or greater, but should be 
used with extreme caution in daily timestep models.  At that resolution, factors 
such as wind speed are very important in determining evaporation rates, and 
the estimates from the Fitzpatrick algorithm are likely to vary widely from 
actual values.  Direct class A pan evaporation data should be used where 
available. 
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The input variables required and the modules that generally supply them are: 

• Minimum temperature (Metbase module) 

• Maximum temperature (Metbase module) 

• 9am Relative Humidity (Metbase module) 

• 3pm Relative Humidity (Metbase module) 

• Daylength (Daylength module) 

 To complete the Evaporation module 

1. Left click on the Inputs button. 
2. Link all input variables to the appropriate variables supplied by other 

modules using the drop down box. 
3. Go back to the Evaporation dialog box and left click on the Outputs 

button. 
4. Select the output variable by left-clicking on the Select button and rename 

using the Rename button if needed. 

Fig. 9-11  The Evaporation module’s input variable dialog box. 

 

The module only outputs one variable: Evaporation (in mm/timestep). 

The Evaporation module is most commonly used to supply evaporation 
values to the Soil Moisture module but could be used to drive any process, 
including mortality. 
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Fig. 9-12  Example Evaporation module diagram. 
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9.5 The Weather Module 

The Weather module is designed to generate output variables that describe 
several features of the daily weather.  As such it can be used to replace several 
other modules in DYMEX (Circadian, Daylength and Evaporation).  The 
module inputs values of latitude, the day of the year, temperature, rainfall and 
a measure of atmospheric mosture and outputs daylength, evaporation, daily 
temperature cycle and derived values of atmospheric moisture.  In addition, the 
module allows the user to integrate the occurrence of preset values of 
temperature and RH to derive an “infection event” similar to that used by some 
modellers to predict the infection conditions for fungal pathogens (for 
example, Wang, Ryley and Meinke 2000). 

Fig. 9-13  Weather module dialog box and its input dialog box. 

 

The module takes as its input the Latitude of the location being simulated, the 
Day of Year, the daily Minimum and Maximum Temperatures, daily Rainfall 

What is the 
Weather 
module? 

 Input 
variables 
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and measures of atmospheric moisture at 9am and 3pm, respectively.  The 
atmospheric moisture measures can be Relative Humidity (default), Vapour 
Pressure or Dewpoint.  The user can specify which particular type of input is 
being provided in the “Settings” dialog.  The rainfall and atmospheric moisture 
inputs are required only if evaporation or the “infection event” outputs are 
being used.  All other inputs are mandatory. 

The “Settings” dialog allows the user to choose the particular cycle shape to 
be used for the daily cycle of temperature (output 1). A choice of Sine, 
Composite (Sine+Sine)  and Composite (Sine+Exponential)  are currently 
available.  These are the same as the available shapes for the Circadian 
module, and a description of these is given in Section 9.1.  

In the Input Atmospheric Moisture box, the user can choose the type of 
variable provided for inputs 6 and 7 of the module.  The available choices are 
Relative Humidity (in %), Vapour Pressure (in millibars)  and Dewpoint 
Temperature (in degrees Celsius). 

In the Output Atmospheric Moisture box, the user can choose the type of 
variable that the module will provide for outputs 4 and 5 of the module.  The 
available choices are again Relative Humidity (in %), Vapour Pressure (in 
millibars) and Dewpoint Temperature (in degrees Celsius).  Thus these outputs 
can be used to convert from one measure of atmospheric moisture content to 
another. 

Fig. 9-14  Weather module Setup dialog box. 

 

 

The following outputs are available from the Weather module: 

1. Daily Temperature Cycle – This is the daily course of temperature, 
interpolated between minimum and maximum temperatures using the 
selected cycle shape (with 24 segments by default).  The next day’s 
minimum temperature is used as the second minimum for all but the 

Settings 

 
Output 

variables 
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Sine shape.  This output variable is different to a normal output 
variable in that it has a number of values – one value for every segment 
(usually 24) over the period of a day.  These values are obtained by 
interpolation, using one of 3 functions selected by the user.  When this 
output is then used as input to a function, the function is evaluated for 
each of these values separately, as if the model had a timestep of 1 
hour.  When the output variable is used directly as input to another 
module, its average value over the 24 segments is used. 

2. Daylength – time between sunrise and sunset (hours) 

3. Evaporation – class A Pan Evaporation (method of Fitzpatrick), in 
mm/timestep. 

4. 9am Atmospheric Moisture – the atmospheric moisture at 9am, 
expressed as selected in the “Settings” dialog. 

5. 3pm Atmospheric Moisture – the atmospheric moisture at 3pm, 
expressed as selected in the “Settings” dialog. 

6. Night hours at 100% RH – the number of hours during the previous 
night (i.e., the night that terminates in the current day’s minimum 
temperature) in which the Relative Humidity was 100%.  This is, 
therefore, the number of hours in which the temperature was below the 
dewpoint. 

7. Night hours above 80% RH – the number of hours during the 
previous night (i.e., the night that terminates in the current day’s 
minimum temperature) in which the Relative Humidity was above 
80%.  The method used to calculate this is taken from Wang, et al. 
(2000). 

8. Germination Event Flag – This output is 1 if, during the previous 
night: (i) The temperature stays between 10° and 33° Celsius, (ii) there 
is at least 4 hours at 100% RH, and (iii) there is at least 10 hours above 
80% RH 

 To complete the Weather module 

1. Left click the Inputs button. 
2. Link Latitude, Day of Year, Daily Minimum Temperature & Daily 

Maximum Temperature by left-clicking on the variables and using the 
drop down menu to find the appropriate variable.  Link the Rainfall and 
Atmospheric Moisture inputs to their appropriate variables if they are 
needed. 

3. Go back to the Weather dialog box and left click on the Outputs button. 
4. Select the Daily Temperature Cycle variable and rename it if desired. 
5. Select any of the other output variables that are required, and rename to 

give meaningful names. 
6. Go back to the Weather dialog box and left click on the Settings button. 
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7. Choose the appropriate Cycle Shapes (e.g. Sine), and, if input or output 
atmospheric moisture variables have been selected in steps 2 and 5 above, 
select the correct type of variable from the given choices. 

8. Go back to the Weather dialog box and click on the Factors button. 
9. Choose appropriate ranges and default values for the 3 factors (you may 

rename them if desired). 

 

The Weather module can be used to replace the Daylength, Evaporation and 
Circadian module in a DYMEX model by a single module.  

 

9.6 The Soil Moisture (1-layer) Module 

The Soil Moisture module is a sub-model that simulates the water balance in a 
single layer of soil.  It outputs an index between 0 and 1, with 0 being dry soil 
and 1 being a saturated soil.  The input variables are Rainfall  and Pan 
Evaporation (both in mm).  Note that the Soil Moisture module can be set to 
use the model’s sub-population structure, thus allowing simulations of (say) 
multiple fields with differing soil characteristics.  

The soil storage capacity is given by a parameter, C (Soil Moisture Capacity), 
while a second parameter, r (Evapotranspiration Rate) gives the soil water 
loss due to evaporation and transpiration when the soil is saturated as a 
proportion of pan evaporation.  A third parameter, E0 (Basal Evaporation) 
allows the user to modify the way that water loss is handled (see equation).  
Then, if Si is the current water content of the soil (as a proportion of the 
capacity) and Ei is the pan evaporation, the proportion of water lost by 
evapotranspiration during a timestep, Wi, is 

  Wi = min(1, max(0, r(E0+Si(Ei-E0))/C)) 

When E0 is set to 0, the effective evapotranspiration rate reduces linearly with 
the current soil moisture store (it equals rSi).  This follows logically from the 
observation that the energy required to extract moisture from the soil increases 
as the moisture level decreases and is a satisfactory scenario for many 
requirements.  In situations where moisture is extracted more rapidly (for 
example, when simulating only a narrow soil profile at the surface), the E0 
parameter can be set to a small positive value to allow water to be drawn from 
the soil at a higher rate.  Note that E0 is expressed in the same units as 
Evaporation and Rainfall. 

Finally, the new water store, Si+1, is given by: 

  Si+1 = min(1,  Si – Wi + Ri/C) 

Where Ri is the rainfall for the current timestep. 

 

What is the 
soil moisture 
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Fig. 9-15 Soil Moisture (1-layer) module’s Factor dialog box. 

 

 

Three Factors have to be specified by the modeller: 

• Soil Moisture Capacity (permitted range: 50-200 mm): The water holding 
capacity of the defined layer of soil (say, 1 metre or to required rooting 
depth), in mm.  Clay soils will have larger values than sandy soils.  Sandy 
soils may store only 50 mm while loams may hold 150 mm and clays 200 
mm within the rooting depth of most crops. 

• Evapotranspiration Coefficient (permitted range: 0.5-1.2): Sum of 
evaporation and transpiration from vegetation expressed as a proportion of 
open Pan Evaporation.  Generally between 0.5 and 1.2 with 0.8 typical. 

• Basal Evaporation (permitted range: 0-5 mm): The portion of the 
evaporation input that is available for evapotranspiration regardless of soil 
moisture status (in mm).  Values above 0 will empty water out of a non-
saturated soil at higher rates than if it is set to the default of 0.  Generally 
set to 0. 

As usual, any of the parameters can be replaced by a function or process.  For 
example, in many situations, the evapotranspiration rate may not be 
satisfactorily simulated using a fixed value parameter.  Satisfactory fits to 
measured data have been derived using a decreasing evapotranspiration rate as 
the soil moisture level drops below the wilting point. 

 To complete the Soil Moisture module 

1. Left click on the Inputs button and link Rainfall and Evaporation to the 
appropriate variables supplied by other modules. 

2. Go back to the Soil Moisture dialog box and left click on the Outputs 
button. 

3. Select the output variable using the Select button and rename it if required, 
using the Rename button. 

Factors 
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4. Go back to the Soil Moisture dialog box and left click on the Factors 
button. 

5. Set the parameter or function that determines each of the soil moisture 
parameters.   

 

Note that all the variables set within the Factor dialog box have descriptions 
already provided for them, with the descriptions including the range of suitable 
values. 

Soil moisture is a more useful measure of available moisture than rainfall.  It 
can be used to determine plant growth, the survival of a lifestage of an 
invertebrate, etc. 

Fig. 9-16  Example Soil Moisture Module Diagram. 
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9.7 The Degree-Day module 

The Degree-day module has a single input (the daily temperature cycle) and a 
parameter that supplies a threshold temperature.  The daily temperature cycle 
must be supplied by a Circadian (see Section 9.1) module.  The output from 
the module is the number of degree-days above that temperature (i.e., the area 
bounded by the daily temperature and the threshold temperature when the daily 
temperature is above the threshold) that is accumulated during a timestep.  A 
factor is used to supply the Threshold Temperature.  This factor will normally 
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be a parameter, but a function or process may be used in those rare cases where 
the threshold temperature changes with time. 

 To complete the Degree-day module 

1. Left click on the Inputs button and within Inputs dialog box link the Daily 
Temperature Cycle to the required daily cycle variable. 

2. Go back to the module dialog box and left click on the Outputs button. 
3. Select the Day-degrees above Threshold variable by left-clicking on the 

Select button, and rename if required.   
4. Return to the module dialog and click on the Factors button.  Set the factor 

as required (usually this will be a parameter). 
 
 

9.8 The Climate Change Scenario module 

The Climate Change Scenario module takes as its inputs variables that 
represent current weather conditions (temperature, rainfall and evaporation) 
and outputs corresponding variables for weather conditions given a particular 
climate change scenario.  The scenario is provided as a set of parameter 
values.  Various simple scenarios are possible using this module.  For example, 
maximum and minimum temperatures under a greenhouse scenario can be 
altered as an overall temperature change and/or as a change in temperature per 
degree latitude. Rainfall can also be altered as a change in percentage winter 
and summer rainfall and/or as a change in rainfall per degree of latitude.  In 
addition, Evaporation may also be adjusted using a simple algorithm.  

Up to 6 input variables are used by this module, as below. 

Day of Year  Number of days elapsed since December 31 

Current Minimum Temperature Itmin The minimum daily temperature (current climate) 

Current Maximum Temperature Itmax The maximum daily temperature (current climate) 

Current Rainfall Irain Total Rainfall (current climate) 

Current Evaporation Ievap Total Evaporation (current climate) 

Latitude l Latitude of location being simulated 

Day of Year is generally obtained from the Timer module.  The temperatures 
are the daily averages over the model timestep, while the rainfall and 
evaporation variables are the total for the timestep.  The evaporation input is 
required only if the evaporation output is selected for the module. 

Four output variables are available from the module, these being the minimum 
daily temperature (Otmin), maximum daily temperature (Otmax), total rainfall 
(Orain) and total evaporation (Oevap) to be expected under the specified 
scenario. 
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The Climate Change Scenario is specified using 18 factors, as listed in Table 
9-2. 

Table 9-2 Climate Change Scenario factors. 

Min. Temperature Change 
(Winter) 

Wtmin The change in the minimum temperature that occurs 
during the 'Winter' months outside the Equatorial 
zone. 

Min. Temperature 
Latitudinal Change 
(Winter) 

WLtmi) The change in the minimum temperature for each 
degree of latitude away from the equator that occurs 
during the 'Winter' months outside the Equatorial 
zone. 

Min. Temperature Change 
(Summer) 

Stmin The change in the minimum temperature that occurs 
during the 'Summer' months outside the Equatorial 
zone. 

Min. Temperature 
Latitudinal Change 
(Summer) 

SLtmin The change in the minimum temperature for each 
degree of latitude away from the equator that occurs 
during the 'Summer' months outside the Equatorial 
zone. 

Min. Temperature Change 
(Equatorial Zone) 

Etmin The change in the minimum temperature that occurs 
inside the Equatorial zone. 

Max. Temperature 
Change (Winter) 

Wtmax The change in the minimum temperature that occurs 
during the 'Winter' months outside the Equatorial 
zone. 

Max. Temperature 
Latitudinal Change 
(Winter) 

WLtmax The change in the maximum temperature for each 
degree of latitude away from the equator that occurs 
during the 'Winter' months outside the Equatorial 
zone. 

Max. Temperature 
Change (Summer) 

Stmax The change in the maximum temperature that occurs 
during the 'Summer' months outside the Equatorial 
zone. 

Max. Temperature 
Latitudinal Change 
(Summer) 

SLtmax The change in the maximum temperature for each 
degree of latitude away from the equator that occurs 
during the 'Summer' months outside the Equatorial 
zone. 

Max. Temperature 
Change (Equatorial Zone) 

Etmax The change in the maximum temperature that occurs 
inside the Equatorial zone. 

Rainfall Change (Winter) Wrain The change in the rainfall (in %) that occurs during the 
'Winter' months outside the Equatorial zone. 

Rainfall Latitudinal 
Change (Winter) 

WLrain The change in the rainfall (in % per degree latitude) 
for each degree of latitude away from the equator that 
occurs during the ‘Winter’ months outside the 
Equatorial zone. 

Rainfall Change 
(Summer) 

Srain The change in the rainfall (in %) that occurs during the 
'Summer' months outside the Equatorial zone. 
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Rainfall Latitudinal 
Change (Summer) 

SLrain The change in the rainfall (in % per degree latitude) 
for each degree of latitude away from the equator that 
occurs during the ‘Summer’ months outside the 
Equatorial zone. 

Rainfall Change 
(Equatorial Zone) 

Erain The change in the rainfall (in %) that occurs inside the 
Equatorial zone. 

Evaporation Change 
(Winter) 

Wevap The change in the evaporation that occurs during the 
'Winter' months outside the Equatorial zone. 

Evaporation Change 
(Summer) 

Sevap The change in the evaporation that occurs during the 
'Summer' months outside the Equatorial zone. 

Evaporation Change 
(Equatorial Zone) 

Eevap The change in the evaporation that occurs inside the 
Equatorial zone. 

 

The Equatorial Zone (z) is a band of latitude centred on the equator and its 
exact extent is defined in the Simulator.  “Winter” and “Summer” seasons are 
defined with reference to the Equatorial Zone and the Day Of Year input.  
North of the Equatorial Zone, “Summer” is defined as that period when Day of 
Year is between 92 and 274 (i.e., March 2 – September 30, inclusive), with 
“Winter” being the rest of the year.  South of the Equatorial Zone, these are 
reversed.   

The temperature output variables are derived from the input variables and 
factors as follows (the “t” subscript can be either “tmin” or “tmax”): 

in the Equatorial Zone,  ttt EIO +=  

elsewhere, in “Winter”, ))2/)(( zlabsWLWIO tttt −×++=  

elsewhere, in “Summer”, )2/)(( zlabsSLSIO tttt −×++=  

The rainfall output variables are derived from the input variables as follows: 

in the Equatorial Zone,  
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rain

rainrain
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The Evaporation output is calculated as follows 

in the Equatorial Zone,  







∆××= t

E
IO evap

evapevap 100
 

elsewhere, in “Winter”,  







∆××= t

W
IO evap

evapevap 100
 

elsewhere, in “Summer”,  







∆××= t

S
IO evap

evapevap 100
, 

where, ∆t is the change in average temperature produced by the 
scenario (i.e., the evaporation change is dependent on the temperature change). 

 To complete the Climate Change Scenario module 

1. Left click on the Inputs button and within Inputs dialog box link the Day 
of Year.  Link each of the other variables in turn (note, however, that the 
Current Evaporation input needs to be linked only if the Evaporation 
output is required). 

2. Go back to the module dialog box and left click on the Outputs button. 
      Select and rename any of the output variables that are required (Fig. 9-17). 

Return to the module dialog and click on the Factors button.  Set the 
factors as required (usually these will be parameters, but more complex 
scenarios could be constructed by using functions or processes for some of 
the factors). 

 

Fig. 9-17  The Climate Change Scenario module output dialog. 
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9.9 The DemeSplitter and DemeStatistics  modules 

These two modules are only available in models that use sub-populations.  
Their purpose to to take demed variables  (see Section 2.1) as input and split 
the variables into normal (non-demed) variables.  The DemeSplitter module 
takes a single demed variable as its input.  There will be as many outputs as 
there are sub-populations.  For example, if the model population consists of 4 
spatial sub-populations (A, B, C and D), each divided into 3 genotypes (SS, SR 
and RR), there would be a total of 12 output variables (“SS/A”, “SR/A”, etc), 
these being the components of the input variable (Fig. 9-18).   

Fig. 9-18  The DemeSplitter module output dialog, showing subpopulation 
components for a model that uses both spatial and genetic subpopulations. 

 

 

The DemeStatistics module is similar to the DemeSplitter module, but has a 
different set of output variables.  If the model population is split into N sub-
populations, the DemeStatistics module will have N+1 outputs.  The first 
output variable is the total of the input variable (summed over all sub-
populations).  The other output variables each represent the proportion of the 
total that is represented by a particular subpopulation.  The example shown in 
Fig. 9-19, which relates to a model with 3 genetic sub-populations (“SS”, “SR” 
and “RR”).  The second output variable (highlighted) is the proportion of 
“Larvae” (the demed input variable) with the “SS” genotype.  Note that in the 
example, only three of the outputs that are available are actually used in the 
model. 
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Setting up a DemeSplitter or DemeStatistics module is very straightforward.  
The user just needs to select the input variable and then select, rename and 
provide a description, etc. for each of the required output variables. 

Fig. 9-19  The DemeStatistics module output dialog, showing subpopulation 
totals and proportions for a model that uses genetic subpopulations. 
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10. Function Templates 

Mathematical functions are used throughout DYMEX to specify relationships 
between variables.  The terminology surrounding functions in DYMEX can be 
confusing, and a few definitions here may help in removing some of the 
confusion. 

Function Template.  A mathematical definition of a function’s shape, 
providing its equation and the symbolic parameters, but not providing values 
for the parameters.   

Function.  This will be used to refer to the actual use of a Function Template 
in a particular place.  As such, parameter values (defaults and/or ranges) are 
provided. 

A number of commonly used Function Templates are provided with DYMEX. 
Full descriptions of each of these functions can be found in the DYMEX Help 
system. 

 

10.1 Adding new  Templates 

If none of the predefined templates are adequate for an application, a new 
template can be defined.  These templates can then be used anywhere in the 
model in the same way as a built-in Function Template.  A template can have 
up to 9 parameters and use any of the syntax described in Section 10.2. 

Assume we need a new Function Template with the following equation: 

2
21

1
xpe

py
−+

=  

In the equation, x is the independent (driving) variable, and p1 and p2 are 
parameters 

 To add this template to the list of Function Templates 

1. Make sure the Model Components window is active, and click on the 
Model|Function Library… menu item.  This opens the Function 
Templates dialog, listing all currently defined Function Templates (Figure 
10-1). 

2. Click on the Add button to open the Function Template definition dialog. 
3. Click on the text box labelled “y=”, and type in the equation as follows: 

[p1]/(1+exp(-[p2]*[x1]^2)) 
This syntax is explained in detail in the next section, but note that the 
parameters and driving variable are within square parentheses and labelled 
sequentially. 
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4. Click on the Refresh button, and two lines of text boxes will appear in the 
dialog for entry of parameter details. 

5. For the first parameter (p1), insert Asymptote as the Name, and set the 
Minimum, Maximum and Display Value, to 0, 1 and 1, respectively.  
These limits define the absolute limits for this parameter in any use of the 
Function Template in the model.  The Display Value is used as the 
parameter value when the function shape is displayed throughout DYMEX. 

6. For the second parameter (p2), insert Sharpness Parameter as the Name, 
and set the Minimum, Maximum and Display Value, to -1, 1 and 0.01, 
respectively.  (Note that if more than 5 parameters are used in a Function 
Template, a button will appear in the dialog that allows switching between 
groups of parameters). 

7. In the Function Display panel, set the Lower Left X and Y values to –20 
and 0, respectively, and the Upper Right X and Y values to 20 and 1, 
respectively.  This has the effect of setting the display coordinates to be 
used in the graphic to the right of the panel, and for all such display 
graphics in DYMEX when this template is illustrated. 

8. Click on the Refresh button to see the new Function Template displayed. 
9. Supply a name for the Function Template by clicking on the Name text 

box, and typing in an appropriate name. 
 

Figure 10-1 Adding a new Function Template to the Function Library 
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10.2 Function Template Syntax 

 
The name and equation defining a Function Template must be provided using 
the syntax outlined in this section. 
 
Template Name 
 
A unique and descriptive name should be chosen for the Function Template. 
The name may be the same as the name of one of the pre-defined Function 
Templates, in which case the pre-defined template will be replaced by the new 
template. 
 

Equation Syntax 

The equation definition may contain the operators and special symbols listed in 
Table 10-2. 

When the equation is evaluated, the [x1] token is replaced by the current value 
of the independent (driving) variable, while [p1] is replaced by the value of the 
first parameter, [p2] by the second, and so on.  Note that [p1] is not 
necessarily the first parameter in the expression – it refers to the first parameter 
in the functions parameter list.  Both the [x1] and any parameter token may 
appear in an expression more than once.  Thus, 5+[p1]*[x1]+ [p2]*[x1]^2 is a 
valid expression.  Spaces are allowed anywhere within an expression, and 
should be used to enhance readability. Alphabetic characters within the 
expression may be in either upper- or lower-case.   

Operators have a precedence order, with evaluation proceeding in the 
following sequence (operators within the same order level are evaluated from 
left to right): 

() 

abs, exp, log, log10, sin, cos, tan, asin, acos, atan, sqrt, max, min, if, ife,  
not, in, rt, crt, rand, rang, try 

^ 

* / 

>  <  <=  >=  != 

& | 

+ - 

Some examples of valid expressions, and their corresponding equations are 
given in Table 10-1: 

 

 



Function Templates 

151 

Table 10-1  Examples of valid Function Template expressions and their 
corresponding evaluations. 

[p1] + [p2]*[x1] + [p3]*[x1]^2 2
321 xpxpxpy ++=  

1 - exp(-[p1]*[x1]) xpey 11 −−=  

[p1]/(1-[p2]*[x1]^2) 
2

2

1

1 xp
p

y
−

=  

[x1] + 10 - [p2]*(sin(pi*[p1]*[x1])) ))(sin(10 12 xppxy π−+=  

([x1]>[p1])*([p2]*([x1]-[p1])) 









≤
>−

=
1

112

,0
),(

pxfor
pxforpxpy  

max(0, [p1] + [p2]*[x1]^2) 2
21 xppy += , or 0, whichever is the 

larger 

if([x1]>-1 & [x1]<1, [x1]*[p1]) 







 <−>

=
elsewhere

xandxforxpy
,0

11,1  

ife([x1]<[p1], [p2], [p3]) 









≥
<

=
13

12

,
,

pxforp
pxforp

y  
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 Table 10-2 Available syntax items for a Function Template equation 
Operator/Symbol Action performed or value substituted 

n Any real number, for example, 5.75 

pi 3.14159….  (i.e, the value of pi) 

e 2.71828….  (ie, the value of e) 

[x1] The independent (driving) variable in the equation 

[pn] The n-th parameter in the equation (eg, [p2]) 

+ addition, eg  [x1]+12 

- subtraction (eg, 7.2-[p1]), or negation (eg, -[x1]) 

* multiplication (eg, [p1]*[x1]) 

/ division (eg, [x1]/2) 

^ power (eg, [x1]^2 is the same as [x1]*[x1]) 

& the “and” operation; evaluates to 1 if and only if both sides of operator are 
positive, evaluates to 0 otherwise 

| the “or” operation; evaluates to 1 if either side of the operator is positive, 
evaluates to 0 otherwise 

> “greater than” (eg, [x1]>5); evaluates to 1 if true, 0 if false 

>= “greater than or equal” (eg, [x1]>=[p1]); evaluates to 1 if true, 0 if false 

< “less than” (eg, [x1]<[p1]); evaluates to 1 if true, 0 if false 

<= “less than or equal” (eg, [x1]<=0); evaluates to 1 if true, 0 if false 

= “equal” (eg, [x1]=0); evaluates to 1 if true, 0 if false 

!= “not equal” (eg, [x1]!=0); evaluates to 1 if true, 0 if false 

abs(t) the absolute value (or magnitude) of expression t 

exp(t) exponential function, i.e, et (eg, exp(2-[p1]*[x1]) ) 

log(t) logarithm with the base ‘e’ of t (eg, log(2.4*[x1]) 

log10(t) logarithm with the base 10 of t 

sin(t) sine of t (t is in radians) 

cos(t) cosine of t (t is in radians) 

tan(t) tangent of t (t is in radians) 

asin(t) arcsine of t (in radians) 

acos(t) arccosine of t (in radians) 

atan(t) arctangent of t (in radians) 
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sqrt(t) square root of  t 

min(t1,t2) the smaller (minimum) of the two expressions, t1 and t2 

max(t1,t2) the larger (maximum) of the two expressions, t1 and t2 

mod(t1,t2) the fractional part of t1/t2 

if(c, t) evaluates to t if c is positive, or 0 if c is less than or equal to 0.  This operator can 
be used to specify “segmented” functions. 

ife(c, t1, t2) evaluates to t1 if c is positive, or t2 if c is less than or equal to 0.  This operator 
can be used to specify “segmented” functions. 

in(r1, r2, t) evaluates to 1 if r1 < t ≤ r2, 0 otherwise 

not(t) evaluates to 0 if the expression in parentheses (t) is positive, 1 otherwise 

rt(t, p, r) The “running total” of t over the previous p timesteps (the total is restarted when 
r <= 0)   

NOTE: DO NOT USE THIS FUNCTION IN COMBINATION RULES 

cnt(t, c, r) The “running total” of t, accumulated while c > 0 (the total is restarted when r <= 
0) 

NOTE: DO NOT USE THIS FUNCTION IN COMBINATION RULES 

rand(t) A uniformly distributed random number (n) in the range 0 <= n < 1.  If t < 0, the 
generator is reseeded 

rang(t1, t2) A normally (Gaussian) distributed random number, where the distribution it is 
drawn from has a mean of t1 and a variance of t2 

try(t1,t2) Evaluates to t1 if the value of t1 is valid, otherwise it evaluates to t2 

() parentheses – these may be used where required to force precedence 
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11. Summary Variables 

Summary Variables (or Run Summaries) are variables that summarize the 
values of normal DYMEX variables in some way over the course of a 
simulation run.  They enable the results of different runs to be compared 
rapidly without the need to examine detailed tables or graphs.  They are 
especially useful in models that will be used to run Sequences (see Simulator 
User’s Guide). 

To create, edit or delete a Summary Variable, select Summary Variables… 
from the Model menu.  This will display the Summary Variables dialog box 
(Fig. 11-1).  The dialog lists all the currently defined Summary Variables in the 
window at top left.  Clicking on a variable name displays that variable’s 
properties in the lower part of the dialog. 

Fig. 11-1 A Summary Variables dialog box showing two summary variables. 

 

 To create a new Summary Variable 

1. Click on the Add button in the Summary Variables dialog box to go to the 
Edit Summary Variable dialog box (Fig. 11-2).   

2. Click on the small button at the right of the Variable to summarize 
window and select the required variable from the drop-down list. 

3. Provide a name for the variable in the Name field.  Note that Summary 
Variable names must be unique within themselves, but a Summary 
Variable may have the same name as a standard variable. 

4. Select the type of summary required by clicking on the appropriate 
selection in the Summary Variable Statistic box. 
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5. Select the period over which the variable is to be summarized (Summary 
Period).  Note that this selection is not available if “Last” has been chosen 
as the statistic in the previous step. 

6. A Description, Mnemonic and Default Precision may optionally be 
provided, as for standard output variables. 

7. Click on Ok to complete the Summary Variable specification. 
 

Fig. 11-2 The Edit Summary Variables dialog box variables. 

 
The Summary Variables Statistic box lists a choice of 5 ways in which a 
variable can be summarized to give a single output value for the Summary 
Variable.  The summary is taken for the period defined by Summary Period. 

• Total - is the total of the variable’s values over the selected period. 

• Average - is the average of the variable’s values over the selected period. 

• Minimum - is the minimum value of the variable during the selected 
period.  

• Maximum - is the maximum value of the variable during the selected 
period. 

• Last Value - is the last value the variable attains during the simulation.  
Note that the period is irrelevant for this statistic. 

Summary Variables may be manipulated using modules (Summary Modules) in 
the same way as standard variables.  

Summary 
Variable 
Statistic 
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12. Working with Model Description Files 

As briefly indicated in Section 1.2, the model that is built using the DYMEX 
Builder is stored in a file with extension “.gmd” – the Model Description File.  
For many simple models, a single file that stores all model components is quite 
adequate.  However, when building complex modules it can be useful to break 
the model up into several smaller physical file units, each containing one or 
more modules.  These units are termed model Sections, and the files they 
reside in are termed Auxiliary Model Description Files (generally given the 
extension “.gmi”).  An example where this is useful may be with the modules 
used in conjunction with meteorological data.  Several models may include use 
MetBase, Circadian, Daylength, Evaporation and Soil Moisture modules in 
the same way.  These could be separated out as a section, to be included in all 
the models that use it.  Thus any changes made to this group of modules would 
automatically apply to all the models.  Another example would be multi-
species models, where each species could be a separate section. 

Figure 12-1 shows a schematic file layout of model that is organized into a 
main model “gmd” file, and two Sections, each stored in an Auxiliary “gmi” 
file.  When either the Builder or the Simulator read the model, reading starts 
with the main “gmd” file.  When a reference to “Section 1” is encountered, 
reading continues at the beginning of Auxiliary File 1.  When the end of this 
file is reached, reading continues with the main file, and so on.  

Figure 12-1 A model can consist of several Sections, each of which is stored in 
a separate Model Description File. 

 

There are several caveats to the use of sections in Auxiliary Model Description 
Files: 

1. Sections may not be nested, i.e., an Auxiliary File may not include a 
reference to a section.  The corollary to this is that the modules in an 
Auxiliary File must be contiguous. 

Main Model Description File

…
…

Section 1

Auxiliary
Model Description File 1

…

…

Section 2

…
…
…

…
…
…

Auxiliary
Model Description File 2

…
…
…

Main Model Description File

…
…

Section 1

Auxiliary
Model Description File 1

…

…

Section 2

…
…
…

…
…
…

Auxiliary
Model Description File 2

…
…
…
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2. Sections are read as if they were part of the main Model Description 
File.  There is no translation or mapping of variable or module names 
at section boundaries.  Therefore, output variable, module and function 
template names must be unique across all the files constituting a model.  
Input variable names in a section that do not have the matching output 
name elsewhere in the model will be considered as not yet set. 

3. When a model is saved, DYMEX saves the Main Model Description 
File as well as any Auxiliary Files that have been changed.  This could 
potentially cause another model using this Auxiliary File to fail to load.  
To avoid this problem, careful thought needs to be given to changes 
made to modules in Auxiliary Files (and they should always be backed 
up as a precaution). 

4. All Function Templates that will be used by an Auxiliary File must be 
defined in the main file before the Auxiliary File can be imported. 

 

 To create a Section from a set of contiguous modules 

1. Make sure the Model Components window is active, and click on the 
Model|Files… menu item.  This opens the Output Files dialog, listing all 
modules currently in the model and their arrangement into files (Figure 
12-2). 

2. Click on the Create new Section button to open the Auxiliary File dialog, 
and type in or browse for a filename. 

3. Click on “Save” to return to the Output Files dialog.  The new Auxiliary 
File will be listed in the Auxiliary Files window, and selected. 

4. In the Modules window, click on one of the modules that is to go into this 
file.  This module must currently reside in the Main Model Description File 
(not one of the Auxiliary Files).  

5. Click on the Assign Module to Section button (which will now be 
enabled) to move the module into the Section. 

6. If required, adjacent modules that are currently in the main file may be 
added to the same Section. 

7. Click Ok to complete the procedure. 
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Figure 12-2 The Model Output Files dialog. 

 

 To remove a Section from a model 

1. Make sure the Model Components window is active, and click on the 
Model|Files… menu item (Figure 12-2). 

2. Highlight the section you want to delete by clicking on it in the Auxiliary 
Files (Sections) window. 

3. Click on the Remove Section button.  This will remove the section, 
moving all its modules into the Main Model File. 

 

 To import an existing Section from a file 

1. Make sure the Model Components window is active, and click on the 
Model|Import Section… menu item. 

2. In the resulting dialog, browse for the Auxiliary File name containing the 
required Section. 

3. If the section being imported contains one or more names that cannot be 
resolved (for example, module input variables, function driving variables 
or function templates), these names will be replaced by the special name 
“(none)”.  A message informs the user that this has occurred.  Any such 
names will need to be resolved manually before the model can be run. 
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12.1 Saving models using Auxiliary Files 

When Auxiliary Files are used in a model, the Save and Save As operations 
become somewhat more complicated.  DYMEX handles these operations as 
follows: 

Save always saves the Main Model File, and attempts to save any Auxiliary 
Files that have been modified (either because component modules have been 
changed or moved between Sections).  If an Auxiliary File cannot be saved, an 
error message indicating the reason is displayed (for example, the file may be 
write-protected). 

Save As can proceed in two ways, with the user able to choose which method 
is used: 

(a) The new Main Model File can contain references to the old 
Auxiliary Files, so that only the Main Model File is saved at the new 
location. 

(b) Copies of each of the Auxiliary Files are created in the same 
directory where the new Main Model File is placed, so that the 
saved copy of the model is completely independent of the old 
version.  

12.2 Directory Layout for model files 

DYMEX does not specify particular directories where models must be stored, 
but for the sake of consistency it is wise to follow a few rules.  This becomes 
especially important if Auxiliary Files are used to store model sections, as the 
paths to the Auxiliary Files are stored in the main GMD file as relative paths.  
Moving model sections into different directories arbitrarily could cause a 
model to fail to load correctly.  The scheme illustrated in Figure 12-3 is 
suggested for model directories.  The “Models” directory would be the base 
directory for all DYMEX model files (not necessarily data files).  Auxiliary 
files used in more than one model would be stored in the “Common” directory, 
while each model description file (and Auxiliary files used only by that model) 
would be stored in “Model 1”, etc.   

Figure 12-3 Model directory layout. 

Models

Common

Model 1

Model 2

Models

Common

Model 1

Model 2
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13. Appendix I.  Transfer Functions and Transfer Rates. 

In DYMEX, a transfer process is applied at every timestep to individuals in a 
cohort.  The result of evaluating that transfer process (the transfer rate, r(t)) 
determines the proportion of those individuals currently in the stage that 
move to the next stage during the timestep.  The following procedure could be 
used to determine the type of transfer function to use in the simple case where 
the transfer is dependent on a single driving variable (commonly 
Chronological Age, Physiological Age or some measure of Size). 

Let us assume we have 100 eggs of a particular species of beetle, which we 
monitor (at intervals of 10 degree-days) until they have all hatched.  Perhaps 
we are keeping temperatures constant so that an interval of 10 degree-days 
might be a constant time interval such as a day.  That is unimportant, as the 
same procedure could be followed even if the monitoring interval did not 
correspond to constant increments. 
 
Let us say we obtain the results shown in Table A1-1 (and plotted in Figure 
A1-1): 

Table A1-1 Accumulated degree-days of eggs and corresponding number 
hatching. 

Accumulated degree-
days since laying 

Number hatching 
during interval 

Accumulated 
number hatched 

300 0 0 
310 5 5 
320 9 14 
330 13 27 
340 15 42 
350 14 56 
360 14 70 
370 11 81 
380 7 88 
390 6 94 
400 3 97 
410 2 99 
420 1 100 
430 0 100 

 
The DYMEX Transfer process determines what proportion of the number in 
the source stage transfer to the destination stage during a particular timestep.  
So let calculate this proportion for our data, as has been done in Table A1-2. 
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Figure A1-1 Number of eggs hatching plotted against accumulated degree-days. 

 

Table A1-2 Proportion hatching per time 

Accumulated 
degree-days since 

laying 

Number hatching 
during interval 

Proportion 
hatching 

Number of 
eggs 

remaining 
300 0 0 100 
310 5 0.05 95 
320 9 0.095 86 
330 13 0.15 73 
340 15 0.21 58 
350 14 0.24 44 
360 14 0.32 30 
370 11 0.37 19 
380 7 0.37 12 
390 6 0.5 6 
400 3 0.5 3 
410 2 0.67 1 
420 1 1.0 0 

 

Plotting the proportion hatching against the accumulated degree-days then 
gives the graph shown in Figure A1-2, indicating that a linear Transfer 
function would probably be a good choice for this situation.  It must be noted, 
however, that the slope of the line is dependent on the choice of timestep for 
the model.  This can be clearly seen if in the case where a large timestep is 
used, so that the eggs can accumulate 120 degree-days during the course of one 
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timestep.  In this case, it is obvious that a very large slope would be needed 
(perhaps even infinity, corresponding to a Step function). 

Figure A1-2 Proportion of eggs hatching during 10 degree-day interval plotted 
against accumulated degree-days. 
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♦ Index 

(none), 7 

, 4, 127, 129, 130, 131 

Action (function), 14 

Automatic Linking, 24 

Auxiliary File, 156–59, 159 

Auxiliary Parameter File, 28 

Basal Evaporation, 140 

Builder, 4 

C.V. Transfer, 92 

Chronological Age, 4, 33, 43, 44, 70, 160 

Circadian. see Module type, Circadian  

Cohort, 32, 39–45, 49, 59, 65, 67, 79, 80, 
82, 86, 90, 93, 94, 96, 98, 160 

Grouping, 88 

Cohort Duration, 6, 98 

Cohort Variable, 32, 65, 70, 79, 81, 90–95, 
97 

Output Operations, 94 

Range, 94 

Scope, 91 

Update Method, 92 

user-defined, 90–95 

Combination Rule, 11, 57–59, 61, 71, 79 

Competition, 64, 77, 96 

Complement-product, 58 

Component Window, 12–14, 17, 21 

Container Stage, 37 

Cost per instance, 128 

Current Average, 93 

Current Value, 93 

Cycle Shape 

Composite (Sine+Exponential), 126, 
137 

Composite (Sine+Sine), 126, 137 

Sine, 126, 137 

Data File Reader. see Module Type, 
DataFile  

Day of Year, 30, 100, 109, 132, 133, 142, 
144 

daylength, 64, 124 

Daylength, 138 

Days since Event, 129, 132 

Days since Start, 30 

Degree-days, 60, 70, 125, 141 

Deme, 5, 7, 16, 20, 146 

Density, 96, 98 

Average, 96 

Cohort, 96, 98 

Total, 97, 98 

Destination Stage, 36, 79 

Development, 31, 43, 44, 49, 50, 51, 53, 
54, 59–64, 82, 98, 123 

Development Time, 6, 35, 98 

Dewpoint Temperature, 137 

Dialog 

, 81 

Cohort Variable, 91 

Combination Rule, 58 

Environment, 47 

Factors, 26, 116 

Function, 53, 74 

Function Properties, 26 

Function Template, 148 

Lifecycle Properties, 33 

Lifestage Properties, 90 

Module, 28, 102, 105, 136, 145, 146 

Module Inputs, 23 

Module Outputs, 25 
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Parameter Properties, 26, 54, 55 

Parameter Set Properties, 28 

Process, 26 

QueryUser/Discrete, 103 

Running Mean, 118 

Timer Setup, 30 

User-defined Cohort Properties, 90 

Weather Module, 137 

Direct Update, 92 

Dispersal, 20, 39, 42, 43, 46, 49, 69, 71, 
75, 79, 83–90 

Drainage Rate, 120 

Endostage, 37 

Environment, 14, 15, 34, 35, 46–48 

Global, 46 

Equation Syntax, 150, 152 

Equilibrium, 29, 109 

Equilibrium Variable, 29 

Evaporation, 138, 142, 145 

Evapotranspiration coefficient, 140 

Event Cost, 131 

Event Duration Override, 130, 132 

Event Threshold, 128, 132 

Event Variable, 131 

Exact Years, 31 

Factor, 11, 57, 141 

Fecundity, 43, 65, 66, 68, 70, 101 

Fecundity (E), 66 

, 66 

Function, 11, 26, 52, 113, 115, 148 

Direct, 71, 74 

Function Properties 

Advanced, 56 

High Limit, 57 

Scale Factor, 56, 57 

Y-offset, 56 

Function Template, 11, 63, 116, 148–50, 
157 

Global Scope, 81, 82, 91 

Immigration, 4, 83 

Inverted Update, 93 

Latitude, 133 

Lifecycle, 1, see Module type, Lifecycle,  

Branch, 4, 31, 32, 35, 36, 38, 66, 80, 83 

Lifecycle Input, 100 

Lifecycle Window, 14, 18, 37 

Lifestage, 6, 15, 32, 34–39, 50, 51, 66, 71, 
73, 80, 81, 91, 96, 160 

Name, 34 

Output, 4, 34, 94, 97–99 

Reproductive, 36 

, 34, 35 

Lifestage Output, 97 

Lifestage Window, 5, 39–43 

, 81, 82 

Low Limit, 57 

Meteorological Data File Reader, 107 

Mnemonic, 6, 25 

Model Description (GMD) file, 4, 156, 
157, 159 

Model, Tree Diagram, 12 

Module, 2, 3, 4, 5, 7–9, 13, 14, 17, 18, 21–
27, 104, 105–7, 107, 108, 111, 113, 114, 
115, 130, 142, 157 

Create, 17 

Description, 27 

Input, 23–25 

Link, 8 

Module dialog, 117, 122 

Module Library, 2 

Module Linkage, 8, 24 

Module type 
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Accumulator, 4, see Running Mean 

Adjustable Circadian, 4 

Circadian, 61, 108, 123–27, 136, 137, 
141 

Climate Change Scenario, 4, 142, 143 

Counter, 4, 115 

DataFile, 25, 31, 104, 107, 108, 121 

, 6, 103, 133–34, 136 

Degree-day, 141 

DemeSplitter, 146–47 

DemeStatistics, 146–47 

Difference, 4, 119 

Equation, 4, 96, 113, 114, 115 

Evaporation, 107, 134–35, 136, 144 

Event, 4, 71, 74, 101, 127–32 

Expression, 111–13 

Function, 3, 113, 116–17, 116 

Lifecycle, 4, 15, 31–101, 101 

MetBase, 2, 107, 108 

MetManager, 4, 109, 110, 121 

QueryFile, 104–5, 104, 105 

QueryUser, 25, 102, 104, 105, 116 

QueryUser/Discrete, 4, 103 

Running Mean, 118 

Soil Moisture, 3, 139–41 

Storage, 4, 119–20 

Switch, 4, 121, 123 

Timer, 17, 22, 29–31, 142 

Weather, 4, 136–39 

Module Type 

Soil Moisture, 3 

Mortality, 31, 44, 49, 50, 51, 58, 71–78, 
97, 98, 99 

Continuous, 71, 73 

Establishment, 71 

Exit, 71 

Naming Modules and Variables, 23 

Number, 35, 43, 44, 49, 75, 97, 98, 99, 
115, 160, 161 

Operator Precedence, 150 

Parameter, 4, 14, 26, 49, 52, 53, 54, 55, 
115, 130 

Limits, 55 

Parameter Set, 27–29 

Physiological Age, 6, 43, 44, 49, 59, 60, 
61, 64, 80, 82, 83, 91, 92, 98, 160 

Plant Growth, 63 

Process, 11, 14, 26, 34, 35, 52, 66, 80 

Establishment, 32 

Exit, 32, 95 

Process Component, 49 

Process Components, 53 

Progeny Production, 43, 65, 66, 67, 68, 98 

Proportional Update, 93 

Radiation, 64 

Reproduction, 31, 50, 75, 101 

, 43, 44, 65, 66, 70 

Resource, 14 

, 34, 35, 96, 97 

Segmentation, 19, 30, 31, 118 

Sex Ratio, 66 

Simulation Date, 30, 100, 105, 107, 108, 
128, 132 

Simulation Id, 7 

Soil Moisture Capacity, 140 

Sort Order, 18, 21, 22 

Stage Link, 35 

Stage Transfer, 32, 45, 49, 50, 51, 59, 70, 
75, 78–83, 98, 160 

Sub-population, 5, 7, 8, 9, 20–21, 24, 33, 
35, 41, 46, 51, 54, 56, 68, 75, 97, 98, 99, 
103, 111, 113, 115, 116, 128, 139, 146 

Summary module, 9 
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temperature, 64 

Time of Day, 30 

Timestep, 19, 30 

Transfer Process, 78 

Trigger, 130 

Update Method, 60 

Use Latest Inputs, 93 

Vapour Pressure, 137 

Variable, 6–7, 6, 8, 11, 14, 24, 25, 50, 53, 
54, 94, 95, 96, 107, 108, 113, 114, 115, 
154, 155, 157, 160 

Cohort Property. see Cohort Variable 

Cohort Variable. see Cohort Variable 

Daily Cycle, 123, 137 

Delay, 6 

Demed, 7 

Private, 26 

Summary, 4, 7, 9, 154–55 

Variables Window, 15–16 

XE, 3 

 


