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Abstract

The utility and flexibility of recent advances in statistical methods for the quantitative analysis of developmental
data—in particular, the methods of individual growth modeling and survival analysis—are unquestioned by
methodologists, but have yet to have a major impact on empirical research within the field of developmental
psychopathology and elsewhere. In this paper, we show how these new methods provide developmental

psychpathologists with powerful ways of answering their research questions about systematic changes over time in
individual behavior and about the occurrence and timing of life events. In the first section, we present a descriptive
overview of each method by illustrating the types of research questions that each method can address, introducing
the statistical models, and commenting on methods of model fitting, estimation, and interpretation. In the following
three sections, we offer six concrete recommendations for developmental psychopathologists hoping to use these
methods. First, we recommend that when designing studies, investigators should increase the number of waves of

data they collect and consider the use of accelerated longitudinal designs. Second, we recommend that when
selecting measurement strategies, investigators should strive to collect equatable data prospectively on all time-
varying measures and should never standardize their measures before analysis. Third, we recommend that when
specifying statistical models, researchers should consider a variety of alternative specifications for the time predictor
and should test for interactions among predictors, particularly interactions between substantive predictors and time.
Our goal throughout is to show that these methods are essential tools for answering questions about life-span
developmental processes in both normal and atypical populations and that their proper use will help developmental
psychopathologists and others illuminate how important contextual variables contribute to various pathways of

development.

Recent years have witnessed major advances
in the statistical methods available for the
quantitative analysis of longitudinal data. De-
scriptions of these advances—in particular,
the methods of individual growth modeling
and survival analysis—can be found through-
out the technical literature and their strengths
and generalizability are widely accepted
among methodologists. Systematic inspection
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of issues of Development and Psychopathol-
ogy over the last 9 years suggests, however,
that—with a few notable exceptions—these
innovations have yet to find their way into ev-
eryday empirical practice within the field of
developmental psychopathology.

We believe that thoughtful application of
these methods will help developmental psy-
chopathologists better address research ques-
tions about the effects of context on develop-
ment. Our goal in this paper, then, is to
promote their proper use by demonstrating
their utility, and by describing how develop-
mental psychopathologists and others might
think about structuring research projects so
as to take fuller advantage of the methods’
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power. We begin with an introductory section
that describes essential features of the two
methods. Here, we give examples of the types
of research questions that each can be used to
address, we specify the underlying statistical
models, we comment briefly on methods of
model fitting and estimation, and we describe
how statistical results can be translated into
substantive findings. In the following three
sections, we offer concrete recommendations
for researchers contemplating use of the new
methods—two about research design, two
about measurement, and two about statistical
analysis. First, we recommend that when de-
signing studies, investigators should increase
the number of waves of data they collect and
consider the use of accelerated longitudinal
designs. Second, we recommend that when
selecting measurement strategies, investiga-
tors should strive to collect equatable data
prospectively on all time-varying measures
and should never standardize their measures
before analysis. Third, we recommend that
when specifying statistical models, research-
ers should consider a variety of alternative
specifications for the time predictor and
should test for interactions among predictors,
particularly interactions between substantive
predictors and time.

Statistical Models for the Study
of Development and Psychopathology
in Context

When investigators ask questions about hu-
man development, within both normal and
atypical populations, they usually pose ques-
tions involving the passage of time. Broadly
speaking, within this universe of research
questions, we can distinguish between at least
two important subclasses. One class of ques-
tion focuses on the ways that individual attri-
butes change over time. For example, in a
study of the development of peer relations
among eclementary school children, Dodge,
Pettit, and Bates (1994) ask how peer rela-
tions change as children mature and whether
children who have been maltreated follow a
different trajectory from those who have not.
The other subclass focuses on the occurrence
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and timing of events. Researchers in this tra-
dition ask whether individuals experience
particular events or transitions, when these
events occur, and what other variables predict
variation in event occurrence and timing. In
a study of juvenile delinquency, for example,
Tremblay, Masse, Vitaro, and Dobkin (1995)
ask (a) whether adolescent boys engage in de-
linquent behavior, (b) when these behaviors
begin, and (c) whether age at onset is associ-
ated with friends’ deviant behavior.

Addressing each of these two classes of
question requires a different analytic strategy.
The former requires methods for measuring
and analyzing change—known variously as
individual growth modeling (Rogosa, Brandt, &
Zimowski, 1982; Willett, 1988), hierarchical
linear modeling (Bryk & Raudenbush, 1992),
random coefficient regression (Hedeker, Gib-
bons, & Flay, 1994), and multilevel modeling
(Goldstein, 1995). The latter requires methods
for analyzing the risk of event occurrence,
known variously as survival analysis (Singer &
Willett, 1991, 1993; Willett & Singer, 1993,
1995), event history analysis (Allison, 1984),
and hazard modeling (Yamaguchi, 1991). Be-
low, we outline briefly the salient features of
each.

Measuring and Modeling Individual
Change Within Context

When people acquire new skills, when they
learn something new, when their attitudes and
interests develop, they change in fundamental
ways. Despite its importance, much contro-
versy has surrounded the measurement of
change (Rogosa et al., 1982; Willett, 1988,
1994). In the past, influential methodologists
convinced themselves, and everyone else, that
it was not possible to measure change well.
Their widely publicized conclusions were
rooted in a simple misconception—that indi-
vidual change should be viewed as an incre-
ment—the difference between “before” and
“after.”"

1. For a critical discussion of classical methods for the
measurement of change, see Willett (1995, 1988), Ro-
gosa and Willett (1985), and Rogosa, Brandt, and Zi-
mowski (1982).
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Methodologists now know that this per-
ception is mistaken. Individual change takes
place continuously over time, and comparison
of each person’s “before” and “after” status is
not the most subtle, nor the most effective,
way to reveal the features of that trajectory.
To measure individual change well, a truly
longitudinal perspective must be adopted—a
sample of people must be followed over time
allowing the researcher to collect multiple
waves of data at sensibly spaced intervals.’

We illustrate the ideas behind individual
growth modeling using data on the delinquent
behavior of 124 adolescents who participated
in the 1988, 1990, and 1992 administrations
of the Children of the National Longitudinal
Survey of Youth (NLSY).! In the left-hand
panel of Figure 1, we display delinquent be-
havior scores for one of these respondents, a
boy (ID 994001). In the panel, we plot his
observed score on the vertical axis versus his
age (here, 11, 13, and 15 years). Notice the
trend in his empirical growth record—the ob-
served scores increase with age, suggesting
that he is engaging in greater amounts of de-
linquent behavior as he grows older.

Individual changes over time like these can
be represented by an individual growth model
that describes the temporal dependence of in-
dividual status on time. For these data, we
might hypothesize that the delinquent behav-
ior (DELBEH) exhibited by adolescent j on

2. Note that the methods of individual growth modeling
are only applicable if it truly makes sense to measure
change in the attribute of interest. At the very least,
the attribute must be a continuous variable, must be
equatable over occasions of measurement, and must re-
main construct valid for the period of observation.

3. Delinquent behavior was measured using nine items
drawn from the NLSY. These items asked how many
times, in the last year, did the adolescent stay out later
than the parent said, stay out without parental permis-
sion, have to bring the parents to school, hurt someone
enough for them to need a doctor, lie about something
important, steal from a store, damage school property,
get drunk, or skip school without permission. Respon-
dents rated each item on a 4-point scale (0 = never, 1
= once, 2 =twice, 3 =more than twice). Individual re-
sponses were summed across the 9 items, providing
an observed delinquent behavior score that could range
from O to 27.
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occasion { can be expressed as a linear func-
tion of AGE,

where we have bracketed structural compo-
nent of the model, representing the depen-
dence of true delinquent behavior on time, to
separate it from the random error, €;, that ac-
crues on each occasion of measurement.
Equation 1 is often referred to as the “within-
person” or “level-1” individual growth model.
The structural part of the level-1 model con-
tains unknown constants referred to as indi-
vidual growth parameters, whose values de-
termine the trajectory of true individual
change over time. Equation 1 contains two
such parameters: 7y and 7;;. If an appropriate
model has been selected to represent individ-
ual growth, these parameters represent key
features of the true growth trajectory for per-
son j. In this case, where the growth is hy-
pothesized to be linear, 1, represents the ado-
lescent’s true level of delinquent behavior at
age 11 years and m); represents his or her true
rate of change in delinquent behavior over
time. If m;; is positive, then child j’s true level .
of delinquent behavior increases with time; if
it is negative then it decreases. We have fit
this model to adolescent 994001’s data using
ordinary least squares (OLS) regression and
superimposed the fitted line on the left-hand
panel of Figure 1. Notice that the estimat-
ed slope is positive (+2.0) indicating that, for
this boy, delinquent behavior tends to increase
during adolescence.

One important feature of the level-1
growth model is that the researcher controls
the substantive interpretation of the intercept
parameter, 7t,. By subtracting 11 from the ad-
olescent’s age before multiplying by the indi-
vidual slope parameter (as in Equation 1), we
have “recentered” the origin of the time axis
to age 11 years. Recentering provides the in-
dividual intercept parameter with an interpre-
tation that is substantively interesting in the
context of this study-—it represents true delin-
quent behavior on entry into the study at age
11 years. In the case of adolescent 994001,
the OLS estimate of his initial level of delin-
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Figure 1. What happens when you fit individual growth models. Left panel: Observed
scores and an empirical growth trajectory for a single case; center panel: a sample of OLS-
fitted growth trajectories for a sample of 25 cases, coded by the gender of the respondent
(boys are dashed; girls are solid); right panel: fitted individual growth trajectories for boys
and girls corresponding to the model in Equations 1 and 2.

quent behavior is 1.67. As we describe in a
later section on analytic recommendations,
many alternative parameterizations of age are
possible, each giving rise to a different inter-
pretation of the intercept.

Just as we are not limited to a particular
definition of the intercept, we are also not
limited to a linear individual growth sum-
mary. Many other possible mathematical
functions are available—both those that de-
pend linearly on time, and those that do not.
Choice of an appropriately shaped trajectory
to represent true individual change is an im-
portant first step in any analysis. Ideally, the-
ory will guide the rational choice of trajectory
so that subsequent analyses have meaningful
interpretations. Often, however, the mecha-
nisms governing the change process are
poorly understood and a linear or a quadratic
curve is used to approximate the trajectory.
Also, in much research in psychology and
psychopathology, only a restricted portion of
the life span is observed and few waves of
data are collected; thus, the selected trajectory
must be mathematically simple. Accordingly,
the trend used to summarize individual
change over time is often a linear function of
time, as it is here. (Other possibilities will be
explored later in the paper.)

A key assumption of individual growth
modeling is that the trajectory for each person
in the population has the same functional
form—in this case, linear—but that different
individuals may have different values of the
individual growth parameters. Adolescents in
this example may differ in their intercepts
(some adolescents may display little delin-
quent behavior at age 11 years, some may dis-
play a lot) and in their slopes (the delinquent
behaviors of some adolescents may change
rapidly with age, while others may display be-
haviors that are relatively stable or even de-
cline as time passes). Such heterogeneity can
be seen in the center panel of Figure 1, where
we display the OLS-fitted individual growth
trajectories for 25 adolescents selected at ran-
dom from the larger group of 124.

Notice that we have coded the trajectories
by the gender of the adolescent—dashed lines
for boys, solid lines for girls. Plots like these
allow us to investigate whether individual
growth trajectories differ from person to per-
son and if the interindividual variation is sys-
tematically related to various contextual vari-
ables, such as characteristics of the individual,
his or her family, or his or her community.
Questions like these—about the correlates and
predictors of change—naturally translate into
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questions about relationships between the in-
dividual growth parameters and variables rep-
resenting individual (and group) characteris-
tics. Inspecting the center panel of Figure 1,
for example, we might ask whether boys and
girls differ in either their delinquent behavior
at age 11 years (represented by the individual
intercepts) or the rate at which delinquent be-
havior changes with age (represented by the
individual slopes). If we detect systematic in-
terindividual variation in change, we know
that children with different characteristics—
for example, gender, family environment,
treatment conditions—grow in different ways.
Questions such as these provide an important
window into the effects of context on devel-
opment by allowing researchers to determine
how individuals from diverse backgrounds
may develop in ways similar to or dissimilar
from one another. In this way, individual
growth modeling may be said to be consistent
with the “person-oriented level of analysis of
a differential pathways approach” to develop-
mental psychopathology advocated by Cic-
chetti and Rogosch (1996, p. 598), such that
one might examine how a diverse set of con-
textual variables may lead to common out-
comes among some individuals, or, con-
versely, how similar contexts may result in
dissimilar outcomes among others.

Analytically, we specify a second statisti-
cal model—often called the “between-person”
or “level-2”" model—to represent interindivid-
ual differences (Bryk & Raudenbush, 1987;
Rogosa & Willett, 1985). In the level-2
model, we express the individual growth pa-
rameters as a function of the selected charac-
teristics. For example, to examine whether in-
dividual growth trajectories differ for boys
and girls, we would posit the following pair
of simultaneous level-2 models,

Ttoj = BUO + BOIFEMALEJ + Ll()j,
TCU=BIO+B“FEMALE}-+MU, (2)

where the dichotomous predictor FEMALE;
indicates whether adolescent j is a girl and the
level-2 residuals, uy and u, represent those
portions of the individual growth parameters
that are “unexplained” by the selected pre-
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dictor of change. The f coefficients summa-
rize the population relationship between the
individual growth parameters and the selected
characteristics. They can be interpreted in
much the same way as regular regression co-
efficients. For instance, if the level of delin-
quent behavior of girls at age 11 years hap-
pens to be higher than that of boys (ie., if
they have larger values of 7y on average)
then By, will be positive (since FEMALE = 1
for girls). If boys have higher rates of change
in delinquent behavior (i.e., if they have
larger values of 7, on average), then B, will
be positive (see below for estimates).

Researchers modeling change can fit the
statistical models in Equations 1 and 2 to data,
allowing estimation and subsequent interpre-
tation of parameters. A variety of methods are
available for fitting models and estimating pa-
rameters. Some methods are very straight-
forward and can easily be implemented on
popular commercially available statistical
computer packages; others are more sophisti-
cated and require dedicated software.

The simplest approach is strictly explor-
atory, as we have already begun to demon-
strate in Figure 1. Here, the level-1 individual
growth model is fitted separately for each per-
son in the data set by OLS regression. These
“person-by-person” analyses provide individ-
ual growth parameter estimates for each per-
son that can be collected together to become
dependent variables in subsequent, and sepa-
rate, between-person data analyses. For in-
stance, in the case of Equation 1, we can first
obtain individual intercept and slope estimates
to represent delinquent behavior at age 11 and
the rate of change in delinquent behavior by
regressing observed delinquent behavior on
age (minus 11 years, see Equation 1) for each
person in the sample. These estimates can
then be collected together and regressed di-
rectly on FEMALE, or other contextual pre-
dictors such as family structure, socioeco-
nomic status, or neighborhood crime rate, in
follow-up level-2 regression analysis.

This exploratory approach can be im-
proved by accounting for interindividual dif-
ferences in the precision of the growth param-
eter estimates. Due to idiosyncracies of
measurement, some people may have empiri-
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cal growth records whose entries are smooth-
ly ordered and for whom the growth data fall
very close to the underlying true trajectory.
Other people may have more erratic growth
records with their data points scattered widely
from the underlying true trajectory. These dif-
ferences in scatter affect the precision (the
standard errors) with which the level-1 indi-
vidual growth parameters are estimated. Those
with smooth and systematic growth records
will have more precise estimates of intercept
and slope (that is, the parameter estimates will
have small standard errors); those with erratic
and scattered observed growth records will
have less precise estimates. Level-2 analyses
of the relationships between the estimated in-
dividual growth parameters and the predictors
of change can be improved (made asymptoti-
cally efficient) if between-person variation in
the precision of the first-round growth param-
eter estimates is taken into account (Willett,
1988).

These ideas are behind much of the dedi-
cated computer software now available for fit-
ting the level-1 and level-2 statistical models
simultaneously. Kreft, de Leeuw, and Kim
(1994) provide a comprehensive review of
several of the programs that were available in
the early 1990s. An exciting new develop-
ment is the availability of routines for fitting
these models in the major statistical packages.
SAS now includes a dedicated procedure—
PROC MIXED—that can be used to fit these
models (see Singer, in press) as does STATA
(XTREG). When data collection has been
time structured—data are available on all sub-
jects at the same ages—individual growth
models can also be fit using the methods of
covariance structure analysis (see Willett &
Sayer, 1994).

We used SAS PROC MIXED to simulta-
neously fit the models in Equations 1 and 2
to our illustrative data. We present the results
of fitting these models in the right-hand panel
of Figure 1, which presents fitted growth tra-
jectories for boys and girls. Interpreting the
actual parameter estimates, we find that ﬁoo =
5.2, indicating that the average 11-year-old
boy has a score of just over 5 on the delin-
quent behavior scale; (b) [301 =~-1.55, indicat-
ing that at age 11 years, the average girl
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scores about one and half points less than the
average boy; (c) [3,0 = .38 indicating that after
age 11 years, the average boy grows just un-
der four tenths of a point per year; and (d)
ﬁn =.17 indicating that the average annual
growth rate for girls is .17 points higher than
the average annual growth rate (.38) for boys.*

Individual growth modeling offers empiri-
cal researchers many advantages. The method
can accommodate any number of waves of
data, the occasions of measurement need not
be equally spaced, and different participants
can have different data-collection schedules.
Essentially, then, not only is the method flexi-
ble enough for almost any empirical setting,
but also the precision (and the reliability) with
which change can be measured is under the
direct control of the investigator via the ma-
nipulation of research design. As we describe
later, individual change can be represented by
a variety of substantively interesting trajec-
tories, including straight-line, curvilinear, or
even discontinuous functions. Finally, not
only can multiple predictors of change (e.g.,
predictors that represent the context in which
individuals develop) be included in the analy-
sis, but simultaneous change across multiple
domains (e.g., change in cognitive function-
ing and change in self-esteem) can be investi-
gated simultaneously.

Measuring and Modeling the Risk of
Event Occurrence in Context

A second class of question posed in develop-
mental research asks “whether” and, if so,
“when” particular events occur. In a recent
book on stress and adversity across the life
course (Gotlib & Wheaton, 1997), for exam-
ple, researchers interested in the sequelae of
trauma asked a variety of questions including
whether an individual ever experiences de-
pression and, if so, when onset first occurs
(Wheaton, Roszell, & Hall, pp. 50-72);

4. To plot the fitted growth trajectories, we substituted
estimates of the four level-2 B coefficients into Equa-
tion 2 to generate estimates of individual intercept and
slope for the average boy and girl. These estimated in-
dividual growth parameters were then used to generate
the required trajectories.
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whether and when street children returned to
their homes (Hagan & McCarthy, pp. 73-90);
whether and when high school graduates got
married and began a family (Gore, Aseltine,
Colten, & Lin, pp. 197-214); and, whether
and when young children made the transition
between adult supervised care and self-care
(Belle, Norell, & Lewis, pp: 159-178).

Familiar statistical techniques, such as
multiple regression and analysis of variance,
are ill-suited for addressing such questions be-
cause they cannot handle situations in which
the value of the outcome—in this case, wheth-
er and when an event occurs—is unknown for
some people under study. Yet when event oc-
currence is studied, such an information short-
fall is almost inevitable. No matter how long
data are collected, some members of the sam-
ple will not experience the target event during
data collection—some people will not get de-
pressed, some street children will not return
home, some high school graduates will not
begin a family. We say that such observations
are censored, and censoring creates an ana-
lytic dilemma. Although the researcher does,
in fact, know something about individuals
with censored event times—that is, if they do
experience the event, it must be after data col-
lection ends—this knowledge is imprecise.
The dilemma is how to analyze data simulta-
neously from both censored and noncensored
cases, because the censored members form a
key group—they are often the ones least
likely to experience the event.

The methods known variously as survival
analysis, event history analysis, or hazard
modeling provide this egalitarian level of in-
clusion. To use them, the researcher must re-
cord, from a predefined starting time, how
long it takes each person in the sample to ex-
perience the target event. Typically, the re-
searcher follows sampled individuals (either
prospectively and periodically, or by retro-
spective event history reconstruction) and re-
cords whether and, if so, when the event oc-
curs. All who experience the event during
observation are assigned explicit event times.
Those who do not experience the event during
observation are noted as censored and the
length of time that they went without experi-
encing the event is recorded. Subsequently,
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their “censored” lifetimes enter into the data
analyses in a meaningful way.

Some researchers record event occurrence
very precisely. When studying the relation-
ship between childhood adversity and death,
for example, Friedman, Tucker, Schwartz,
and Tomlinson-Keasey (1995) used public
records to determine the precise time (year,
month, day) of death. We refer to such precise
records of event occurrence as continuous-
time data. More commonly, however, re-
searchers record only that the event occurred
within some finite time interval. A researcher
might know, for example, the year that a per-
son first experienced depressive symptoms or
the grade that a child switched from adult-
supervised care to self-care. We call data such
as these discrete-time data. Because discrete-
time data are so common in developmental
studies, we focus on methods for these data
in this paper, known as discrete-time survival
analysis.

When examining the occurrence of an
event such as “experiencing an initial episode
of depression” for a random sample of indi-
viduals, we begin by investigating the pattern
of event occurrence over time. We ask, for
example, when are individuals most likely
first to experience a depressive episode—dur-
ing childhood, their teens, or their 20s, 30s,
or 40s? When we pose such questions, we are
implicitly asking about variation in the risk of
event occurrence across time periods. Know-
ing how the risk of experiencing an event
fluctuates over time answers both the whether
and the when questions posed.

But how can the risk of event occurrence
be summarized, especially when some of the
sampled people have censored event times? In
discrete-time survival analysis, the fundamen-
tal quantity representing the risk of event oc-
currence in each time period is called the haz-
ard probability. Its computation in the sample
is straightforward. In each time period, one
must identify the risk set—the pool of people
who are at risk of experiencing the event in
this period (i.e., those who have reached this
time period without experiencing the event)—
and compute the proportion of this group that
experiences the event during the period. No-
tice that this definition is inherently condi-
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Figure 2. What happens when you fit hazard models. Hazard and survivor functions de-
scribing age at first onset of depression by gender. The left panel presents sample functions:

the right panel presents fitted functions.

tional: once a person experiences the event (or
is censored) in one time period, he or she is
no longer be a member of the risk set in any
future period. A plot of the set of hazard prob-
abilities against time yields the hazard func-
tion, a chronologically ordered summary of
the risk of event occurrence.

In the top left-hand panel of Figure 2, we
present sample hazard functions estimated
from retrospective data on 1,393 Canadian
adults who were asked whether and, if so,
when they first experienced a depressive epi-
sode (Wheaton et al., 1997). These functions
describe the risk of initially experiencing a
depressive episode in each of 13 successive
time periods (age 9 or younger, 10-12, 1315,
16-18, ..., 4042, and ages 43 years and
older). Inspection of the sample hazard func-
tions helps pinpoint when events are likely to
occur—we see that for both males and fe-
males, the risk of experiencing an initial epi-
sode of depression is low in childhood, in-

creases during adolescence, and then peaks in
the early twenties. After this point, the risk of
initial onset of depression, among those who
have not yet had a depressive episode, is
much lower. By the early forties, the risk de-
clines to preadolescent levels for men but
rises again for women. Beyond this overall
pattern, notice that in all but two time periods,
a sex differential exists—women seem to be
at greater risk of experiencing a depressive
episode than men.

The *“conditionality” inherent in the defini-
tion of hazard is critical because it leads the
hazard probability to deal evenhandedly with
censoring by ensuring that all individuals re-
mains in the risk set until the last time period
that they are eligible to experience the event
(at which point they are either censored or
they experience the target event). For exam-
ple, the hazard probability for initial onset of
depression during the age period 31-33 years
is estimated conditionally using data from all
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those individuals (852 of the initial sample of
1,393) who were at least age 31 when data
were collected, but who had not yet had a de-
pressive episode during any earlier time pe-
riod. Individuals who were not yet in their
early thirties (n = 227) or who had already ex-
perienced a depressive episode (n = 314) were
no longer at risk and were excluded from the
computation of hazard in this time period and
all subsequent time periods.

In addition to using the hazard function to
display the risk of event occurrence over time,
the period-by-period risks can be cumulated
to display the proportion of a sample that
“survive” through each time period without
experiencing the event. This proportion is
called the survival probability, and a survivor
function is a plot of this proportion against
time (for computational details, see Willett &
Singer, 1993). In the bottom left-hand panel
of Figure 2, we display sample survivor func-
tions for the men and women in our example.
These functions present the proportion of
adults who “survived”—that is, did not expe-
rience an initial depressive episode—through
each successive time period. Notice that the
curves are high in the beginning—at birth, all
individuals are “surviving,” as no one has ex-
perienced a depressive episode and thus the
survival probabilities are 1.00. Over time, as
individuals begin to experience initial depres-
sive episodes, the survivor functions decline.
Because most adults in this sample never ex-
perience a depressive episode at any time in
their lives, the curves do not reach zero, but
end at .77 for men and .62 for women.

Sample hazard and survivor functions de-
scribe whether and when individuals are
likely to experience a target event. They can
also be used to answer questions about group
differences that represent the differing con-
texts in which individuals develop. Such con-
textual variables and the associated research
questions that might be addressed could in-
clude, for example, family size—are individu-
als from larger families less likely to experi-
ence a depressive episode than individuals
from smaller families?; child maltreatment—
are maltreated children more likely than non-
maltreated children to repeat a grade in
school?; or parental divorce—are children of
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divorced parents more likely than children of
intact families to undergo a divorce them-
selves? Implicitly, each of these examples
uses individual contextual characteristics—
family size, child maltreatment, and parental
divorce—to predict the risk of event occur-
rence. When we contrast the pairs of sample
hazard and survivor functions displayed on
the left-hand side of Figure 2, we are implic-
itly treating gender as a predictor of risk of
first onset of depression. But such exploratory
comparisons are limited because, using sam-
ple plots, it is difficult to examine the effects
of continuous predictors, to examine the ef-
fects of several predictors simultaneously, to
explore statistical interactions among predict-
ors, and to make inferences about the popula-
tion from which the sample was drawn. These
more complex analytic goals are achieved by
postulating and fitting statistical models of the
hazard function and by conducting tests on
the parameters of these models.

Statistical models of hazard express hy-
pothesized population relationships between
entire hazard profiles and predictors. To moti-
vate our representation of this idea, examine
the two sample hazard functions in the top left
panel of Figure 1 and imagine that we have
created a dummy variable, FEMALE, taking
on values of O for males, 1 for females. In this
formulation, visualize the entire hazard func-
tion as the conceptual “outcome” and the
dummy variable FEMALE as the potential
“predictor.” How should we characterize the
relationship between outcome and predictor?
Ignoring differences in the shapes of the pro-
files for the moment, notice that when FE-
MALE =1, the sample hazard function is
generally “higher” relative to its location
when FEMALE =0, indicating that in virtu-
ally every time period, women are more likely
to experience an initial depressive episode. So
conceptually, at least, the effect of the pre-
dictor FEMALE seems to be to “shift” one
sample hazard profile vertically relative to the
other. A population hazard model formalizes
this conceptualization by ascribing vertical
displacement in the population hazard profile
to variation in the predictors.

The complication, of course, is that the dis-
crete-time hazard profile is no ordinary con-
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tinuous outcome. It is a set of conditional
probabilities, each bounded by 0 and 1. Statis-
ticians who model a bounded outcome like
this as a function of predictors generally do
not use a linear function to express the rela-
tionship. Instead, they use a nonlinear link
function that has the net effect of transform-
ing the outcome so that it is unbounded, in
order to prevent fitted values from falling out-
side the permissible range (in this case, be-
tween 0 and 1). When the outcome is a proba-
bility, as it is here, the logit link function is
popular (Collett, 1991). If p represents a prob-
ability, then logit (p) is the natural logarithm
of p/(1 — p) and, in the case of these data, can
be interpreted as the log-odds of initial onset
of depression.

Letting h;(1;) represent the population haz-
ard profile—that is, a list of population condi-
tional probabilities for person j at discrete
times, #, a suitable statistical model relating
the logit transform of hazard to values of the
predictor FEMALE is

logit h;(1;) = Bo(t) + BFEMALE, 3)

where parameter Py(1) is known as the base-
line logit-hazard profile. It represents the
value of the outcome (the entire logit-hazard
profile) when the value of the predictor FE-
MALE is O (i.e., it specifies the profile for
men). Notice that we write the baseline as
Bo(), a function of time, and not as {3, a sin-
gle term unrelated to time (as in regression
analysis), because the outcome (logit A(t)) is
an entire temporal profile. The discrete-time
hazard model in (3) specifies that differences
in the value of the predictor “shift” the base-
line logit-hazard profile up or down. The
magnitude of the “slope” parameter B, rep-
resents the vertical shift in logit-hazard as-
sociated with a one unit difference in the
predictor. Because the predictor here is di-
chotomous, B, captures the differential risk of
onset (measured in the logit hazard scale) for
women in comparison to men.

Model fitting, parameter estimation, and
statistical inference for discrete-time hazard
models are easily achieved using standard
software for logistic regression (for a techni-
cal discussion, see Singer & Willett, 1993; for
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a hands-on applied discussion, see Willett &
Singer, 1993). Without delving into details,
suffice it to say that once a discrete-time haz-
ard model has been fit, its parameters can be
reported along with standard errors and good-
ness-of-fit statistics in much the same way
that the results of regular regression analyses
are reported. And, just as fitted lines can be
used to illustrate the influence of important
predictors in the context of multiple regres-
sion, so, too, can fitted hazard functions (and
survivor functions) be displayed for prototypi-
cal people—those who share substantively
important values of selected predictors.

We illustrate the results of this process in
the right-hand panel of Figure 2 which pres-
ents fitted hazard and survivor functions for
the model presented in Equation 3. Compar-
ing the right and left panels, notice that the
fitted plots on the right side are far smoother
without the crossing and zig-zagging charac-
teristic of the sample plots on the left side.
This smoothness results from the constraints
inherent in the population hazard model stipu-
lated in Equation 3, which forces the vertical
separation between the two hazard functions
to be identical (in logit-hazard scale) in every
time period. Just as we do not expect a fitted
regression line to go through every data point
in a scatterplot, we do not expect a fitted haz-
ard function in survival analysis to match ev-
ery sample value of hazard since the discrep-
ancies between the sample and fitted plots
presented in Figure 2 may be nothing more
than sampling variation.

What have we learned by fitting this statis-
tical model to these data? First, we reveal a
more clearly articulated profile of risk over
time by pooling information across individu-
als and by asking questions about the popula-
tion from which these data derive. Here, our
analyses concur with the findings of other re-
searchers who have studied the initial onset of
depressive disorders (e.g., Sorenson, Rut-
ter, & Annenschel, 1991): the risk of onset
is relatively low in childhood, rises steadily
through adolescence, reaches a peak in the
early twenties, at which point it declines, fall-
ing not back to zero, but to moderate levels
that never quite reach the peak risks of early
adulthood. Second, we can quantify the in-
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creased risk of initially becoming depressed
among women in comparison to men, and we
can conduct a hypothesis test of whether this
gender differential may be a result of sam-
pling variation. Our analyses yield a parame-
ter estimate of 0.52 for B,, indicating that the
vertical separation, in the logit-hazard scale,
between the profiles of risk for men and
women is 0.52. Conducting the appropriate
hypothesis test, we obtain a y° test statistic
of 23.20 (df=1, p < .0001) and can therefore
reject the null hypothesis that the predictor
FEMALES has no effect on the population
hazard profile (i.e., we reject the null hypothe-
sis that Hy: B, =0). Because few researchers
possess an intuitive understanding of the
logit-hazard scale, we recommend using the
standard data-analytic practice of antilogging
the coefficient in order to interpret it in terms
of odds and odds-ratios (Hosmer & Lemes-
how, 1989). Antilogging .52, the estimated
odds of experiencing an initial depressive epi-
sode in any given time period are 1.67 times
higher for women compared to men (again
confirming other investigators’ findings that
women typically display higher levels of in-
ternalizing behaviors, such as depression, than
do men; Kandel & Davies, 1986; Nolen-
Hoeksema, 1990; Petersen, Sarigiani, & Ken-
nedy, 1991).

The fitting of discrete-time hazard models
provides a flexible approach to investigating
predictors of event occurrence that appropri-
ately includes data from both censored and
non-censored individuals. Although hazard
models may appear unusual, they actually re-
semble familiar multiple linear and logistic re-
gression models. Like these familiar models,
hazard models can incorporate several pre-
dictors simultaneously, permitting the exami-
nation of the effect of one predictor while
controlling statistically for the effects of oth-
ers. In this way, then, developmental psycho-
pathologists might, for example, study the ef-
fect of maternal depression on the prediction
of the onset of disruptive behavior problems
in children while controlling for the effect of
family socioeconomic status. Given that low
socioeconomic status is often associated with
multiple risk factors, such as maternal depres-
sion (Shaw, Owens, Vondra, Keenan, &
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Winslow, 1996), controlling for SES within a
discrete-time hazard model can allow investi-
gators to examine the effect of a contextual
variable such as maternal depression over and
above the effect of the context of family pov-
erty. Similarly, we can examine the syner-
gistic effect of several contextual predictors
by including statistical interactions among
them. Accordingly, then, one might study
how the effect of maternal depression on the
onset of childhood disruptive behaviors dif-
fers in families below the poverty line versus
those above it, affording yet another view of
the importance of contextual variables in the
prediction of the development of maladaptive
behavior over time. Such a view of the interac-
tive nature of determinants of developmental
pathways is consistent with the conceptualiza-
tion of developmental psychopathology, es-
poused by many researchers, as a “develop-
mental process in which the individual’s
adaptive functioning at any point in time is
the product of multiple, interacting factors, in-
cluding contextual and organismic variables”
(Walker, Neumann, Baum, Davis, DiForio, &
Bergman, 1996, p. 655). As is the case with
individual growth modeling, then, discrete-
time hazard models allow for the investiga-
tion of those variables that characterize the
specific context in which development occurs
and thus offer investigators valuable tools for
the study of developmental psychopathology
in context.

As alluded to above, one appealing feature
of hazard models is that we can include pre-
dictors whose values vary with time. Unlike
time-invariant predictors, such as sex or race,
time-varying predictors describe contextual
characteristics that may fluctuate with time,
such as an individual’s marital status, income,
level of depression, or exposure to life stress.
For clarity, when specifying statistical models
that include time-varying predictors, we in-
clude a parenthetical ¢ in the variable name to
distinguish time-varying predictors from their
time-invariant cousins. We believe that the in-
clusion of time-varying predictors in hazard
models represents an exciting opportunity for
two reasons. First, when investigating devel-
opment, researchers often study behavior
across extended periods of time and it is natu-
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ral for the values of substantively important
predictors to vary. In the investigation of
schizophrenia, for example, studies have
shown that exposure to life stress, such as pa-
rental maltreatment, is related to the expres-
sion of the genetic predisposition (i.e., the
congenital diathesis) for schizophrenia (Walk-
er et al.,, 1996). Certainly, life stress is not a
“static phenomenon,” such as gender, but one
whose level, and thus effect on an outcome
such as the expression of schizophrenia,
changes over time, often as a result of other
time-varying predictors, such as family socio-
economic status. This consideration of vari-
ables changing in concert with one another
brings to mind a second reason that the inclu-
sion of time-varying predictors in hazard
models represents an exciting research oppor-
tunity: research questions about develop-
mental processes of adaptation and mala-
daptation often focus on the co-occurrence
of several different events. Developmental
psychopathologists may ask, for example,
whether the occurrence of one stresstul event,
such as parental divorce, predicts the occur-
rence of another stressful event, such as the
onset of depression. Such questions can be an-
swered simply by coding the precipitating
event as a time-varying predictor.

We illustrate the use of time-varying
predictors by adding the dummy variable
PARDIV(t;), which indicates whether indi-
vidual j’s parents had divorced by time , (0 =
not yet divorced; 1 = divorced), as a predictor
to our previous logit-hazard model, Equa-
tion 3’

+ B,PARDIV,(1,)). (4)

In Equation 4, the values of predictor
PARDIV(¢) vary over time (beginning at 0
among intact families and switching to 1 if,
and when, the individual’s parents divorce).
The model stipulates, however, that the effect
of parental divorce on the risk of onset is con-

5. Additional analysis confirmed that no statistical inter-
action existed between these main effects—that is, the
effect of parental divorce on risk was identical for men
and women.
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stant over time, represented by the single pa-
rameter [B,. Here, we estimate [3, to be 0.34,
indicating that the odds that a child of di-
vorced parents will become depressed are
1.41 (=) times higher than the correspond-
ing odds for a child of nondivorced parents.
(Later in the paper, we will show how to relax
the assumption that the effect of a predictor is
constant across the life span.)

Figure 3 presents the results of fitting the
model in Equation 4. Comparison of the four
prototypical hazard functions illustrates the
large and statistically significant effects of the
two predictors: Women are at greater risk of
experiencing depression as are individuals
whose parents divorced. Because PARDIV(¢)
is a time-varying predictor, however, these fit-
ted functions should not be interpreted in ex-
actly the same way as the fitted plots in Fig-
ure 2. Focus first on the bottom fitted hazard
profile, which depicts the risk of experiencing
a depressive episode among men whose par-
ents never divorced. This profile is the lowest
of the four fitted hazard profiles because this
group is at lowest risk of experiencing a de-
pressive disorder. Now consider the profile
that would result if a boy’s (or man’s) parents
divorce. While the parents were married, the
boy’s risk profile would still be represented
by the lowest of the four hazard functions.
When they divorce, however, the later portion
of this boy’s risk profile (after the divorce)
would be described by the other fitted hazard
profile for males, which is substantially
higher, capturing the increased risk of depres-
sion among males whose parents had di-
vorced.

As with growth modeling, the advent of
hazard modeling offers much to develop-
mental psychopathologists and others who
seek to study development in context. Not
only can the occurrence and timing of events
be investigated within a coherent framework,
but the ease with which time-varying predict-
ors can be incorporated offers a unique ana-
lytic opportunity. Given that many contextual
predictors fluctuate naturally with time (e.g.,
family and social structure, employment, op-
portunities for emotional fulfillment, and ex-
posure to extreme life stress), hazard model-
ing allows investigators to study how various
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Figure 3. Including a time-varying predictor in hazard models. Fitted hazard functions de-
scribing age at first onset of depression by gender and whether the respondent’s parents had

divorced.

life contexts eventuate in a variety of develop-
mental pathways, allowing for the consider-
ation both of how different life contexts may
lead to similar outcomes (a process described
by Cicchetti, 1990 as “equifinality”’) and how
similar life contexts may lead to a variety of
different developmental outcomes (Cicchet-
ti’s, 1990, principle of “multifinality”). In ad-
dition, and perhaps most importantly, hazard
modeling allows for the study of the occur-
rence and timing of concomitant events, such
that the delicate interplay between important
contextual predictors might be studied. With
hazard modeling, researchers have a straight-
forward method of examining relationships
between event occurrence and these critical
time-varying descriptors.

Recommendations for the Design of
Longitudinal Studies

Increase the number of waves of
data collection

Strangely enough, few published studies of
psychological or psychopathological “devel-
opment” are truly longitudinal. Most rely
upon cross-sectional or two-wave designs.
Unfortunately, neither single-wave studies nor
even two-wave studies provide a sufficient
basis for studying development. We believe
that investigators allocating limited research

resources would be better served by increas-
ing the number of waves of data collection,
even at the expense of the total number of
children studied.

What’s wrong with cross-sectional de-
signs? Basically, they tell us nothing about
patterns of change and event occurrence. If a
cross-sectional study of adolescents in a high
school reveals that younger children exhibit
higher levels of delinquency than their older
peers, can we infer that delinquency decreases
with age? Although the logical answer may
be “yes,” the empirical answer is a resounding
“no.” Even within the same school, a random
sample of high school seniors will differ from
a random sample of high school freshmen in
potentially important ways—the two groups
entered school in different years, they have
experienced different significant life events,
and perhaps most importantly, the sample of
high school seniors will not include peers who
dropped out before reaching their senior year.
Observed differences in delinquency between
age-separated cohorts, then, may be due to
nothing more than differences in these back-
ground characteristics, not to differences in
development.

Two-wave studies are only marginally bet-
ter. In the case of the measurement of change,
for instance, the difference between a per-
son’s observed score at Time 1 and his or her
score at Time 2 can tell us whether change
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has occurred from beginning to end but is in-
adequate for studying change because it re-
veals nothing about the shape of each per-
son’s trajectory. Did all the change occur
immediately after Time 1 or was progress
steady over the entire interval? The more
complex the temporal shape of the individual
trajectory or the baseline hazard function, the
more waves of data must be collected for the
clear analytic description of that shape.

How many waves of data are enough? The
advantages associated with additional waves
of data collection depend, in part, upon the
shape of the growth trajectory or the baseline
hazard function. We must collect at least one
more data point than there are unknown pa-
rameters in the individual growth model or in
the baseline hazard function. In the case of
the measurement of change, the adoption of a
linear individual growth model, with its pair
of intercept and slope parameters, requires
that at least three waves of data be collected
from each person under study. More complex
growth models increase the data require-
ments—a quadratic model requires at least
four waves, cubic models at least five. Similar
conclusions apply in the case of hazard mod-
eling. Such requirements imply that, to design
their studies well, empirical researchers must
use a combination of theory, prior research,
or, better yet, pilot data, to make an educated
guess about the potential shape of the growth
trajectory or the hazard profile.

Whether we measure change or model
event occurrence, however, these minimal
requirements simply provide one degree of
freedom per person for estimating model
goodness-of-fit. Just because we are able to
estimate a model’s parameters does not imply
that these parameters have been estimated
well. Parameter estimation will always be im-
proved if further waves of data are added to
the design.

In the case of the measurement of change,
for example, we can make the case for addi-
tional waves of data in two ways: (a) at the
individual level, by examining the precision
with which the change will ultimately be mea-
sured, and (b) at the group level, by consider-
ing the reliability of the change measurement.
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At the individual level, the precision with
which we can estimate the parameters of an
individual growth model improves dramati-
cally when more waves of data are collected
(see also Cook & Ware, 1983). We illustrate
this in the left-hand panel of Figure 4, in
which we plot the standard error with which
the individual rate of change can be estimated
(in units of residual standard deviation) as a
function of the number of waves of data col-
lected.® Notice that the relationship is strictly
monotonic—as more waves of data are col-
lected, the smaller the standard error of the
estimated linear slope becomes, reflecting im-
proved precision for the measurement of indi-
vidual change. We reach the same conclusion
at the group level by examining the relation-
ship between the reliability with which
change can be measured and the number of
waves of data collected.” We display this rela-
tionship in the right-hand panel of Figure 4.

Inspection of Figure 4 also suggests that
adding waves of data to an existing design
gives a “bigger bang for the buck” when the
original number of waves was small. This
gain can be seen by examining the slopes of
either of the curves in Figure 4. Notice that
these slopes are steeper initially, and then de-
cline as the number of waves of data in-
creases. Adding an extra wave of data collec-
tion to a design that has only three waves,
then, has a much greater impact on precision
and reliability, proportionally speaking, than
adding an extra wave to a design that has
eight waves.’

Similar conclusions can be inferred for the
estimation of the baseline hazard profile in the

6. In Figure 4, we assume linear individual growth, inde-
pendent homoscedastic normally distributed Level-1
measurement errors, and equally spaced occasions of
measurement.

7. The reliability with which change is measured is de-
fined here as the proportion, in the population, of the
observed variance in linear slope that is true variance
in linear slope.

8. Plots like Figure 4 can be used to design data collec-
tion, by permitting the investigator to decide in ad-
vance on the number of waves of data required for
measurement precision or measurement reliability to
reach a target level (see Singer & Willett, 1996; Wil-
lett, 1989).
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Figure 4. The benefits of increasing the number of waves of data collection. Left panel:
standard error of individual rate of change (in units of residual standard deviation); right
panel: reliability of rate of change. Both panels assume linear individual growth, ordinary
least squares estimation of the rate of change, and equally spaced waves of longitudinal

data.

case of discrete-time survival analysis. Over-
all, the message is clear-—collect extra waves
of data at all costs!

Consider accelerated longitudinal designs

Longitudinal research is not without its disad-
vantages. Two of the most prominent are the
amount of time it takes to complete a study
and the risk that its findings may be out-of-
date by the time data collection (and analysis)
ends. If a single cohort of 6th graders is
tracked for, say, 7 years (through 12th grade),
the next generation’s 6th graders may behave
nothing like those in the original sample when
they were that young. So, too, few researchers
(and funding sources) want to wait for the end
of a lengthy longitudinal study before analyz-
ing data and presenting findings.

Accelerated longitudinal  designs—also

known as cohort-sequential designs (Nessel-
roade & Baltes, 1979) or mixed longitudinal
designs (Berger, 1986)—shorten the length of
time needed to conduct longitudinal research.
Although there are many different types of ac-
celerated design, they all share one character-
istic: rather than follow a single age-homoge-
neous cohort for the entire age period of
interest, select two or more distinct age co-
horts and track each for a shorter period of
time. In the most common accelerated de-
signs, data collection begins in a single base
year. In the Adolescent Pathways Project
(APP), for example, Seidman (1991) tracked
two cohorts of students annually for 3 years,
from 1989 to 1991, with initial data collection
for each cohort beginning in those grades im-
mediately preceding a potentially disruptive
event of interest—the transition from one type
of school (middle school, junior high, or high
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school) to the next. The younger cohort was
comprised of 863 S5th and 6th graders; the
older cohort was comprised of 470 8th and
9th graders. By the third wave of data collec-
tion, members of the younger cohort were in
8th and 9th grade (the same grades as the
members of the older cohort during the first
wave of data collection) and members of the
older cohort were in 10th and 11th grade.
Within 3 years, Seidman had three waves of
longitudinal data on students covering seven
distinct grades from the 5th through the 11th.

Accelerated longitudinal designs have an-
other advantage as well—they can help un-
ravel the inherent confounding known as the
“Age, Period, and Cohort” problem (Mason &
Fienberg, 1985; Schaie, 1965). A student’s
place in time is marked by (a) his or her birth
year (“cohort”), (b) his or her age (or grade
in school), and (c) the chronological year (or
“period”) being described (2000, 2001, etc.).
Although developmentalists emphasize the ef-
fects of age, outcomes may also be a function
of the child’s year of birth (the cohort effect)
and the actual year being described (the
period effect). Flynn (1987), for example,
identified potentially profound cohort effects
when he examined data from more than a
dozen countries over 10- to 20-year periods
and found that within less than a generation,
average scores on IQ tests rose between 5 and
25 points.

The analytic problem is that all three di-
mensions of time are intimately linked—
knowledge of any two defines the third. Data
on 10-year-olds in the year 2000, for example,
describe children born in 1990. This depen-
dence makes it difficult to determine whether
observed differences across individuals should
be attributed to age (as is commonly done) or
whether cohort and period effects also play a
role. Cross-sectional studies confound the ef-
fects of age with the effects of cohort (al-
though age is commonly assumed to be the
overriding factor) and they preclude examina-
tion of period effects because chronological
time (the year of data collection) is held con-
stant. Traditional longitudinal studies con-
found the effects of age and period (although
age is once again usually given precedence)
and they preclude the examination cohort ef-
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fects (because cohort is held constant by sam-
pling). Accelerated longitudinal designs, in
contrast, can provide insight into age, period,
and cohort effects. By comparing parameter
estimates from growth trajectories for the two
cohorts in the APP, for example, Seidman
could determine whether eighth graders in the
younger group differ from eighth graders in
the older group. Although he could not as-
cribe differences unequivocally to the effects
of cohort (because the eighth grade data for
the two cohorts were collected in different pe-
riods [years]), lack of a difference would be
reasonably interpreted by most researchers as
a sign of no cohort effect.

To unravel the Age, Period, and Cohort
problem further, the common accelerated de-
sign can be modified in one of two ways—
through the re-initiation of data collection in
multiple base years (see Singer & Willett,
1996) or through a lengthening of the period
of overlap between cohorts. The APP could
be amplified into a multiple-base-year accel-
erated design by fielding a second 3-year data
collection plan 1 (or 2) years after the initial
round. The additional data would allow the
researcher to add explicit variables represent-
ing the effects of period and cohort into the
growth models and hazard models presented
in Equations 2 and 3 (e.g., Raudenbush &
Chan, 1992; Singer & Willett, 1988; Singer,
1993).

Alternatively, the length of the overlap be-
tween the two or more cohorts in a single-
base year design can be expanded. Most ac-
celerated designs employ a single overlapping
age (or grade) set to be at the edge of both
cohorts. Setting the overlap at the edge of the
cohorts maximizes the length of the overall
developmental trajectory, while still providing
the minimal amount of overlap necessary (one
wave) for piecing together distinct individual
growth models and hazard functions (Ander-
son, 1995). But this practice has a cost. First,
it limits the precision with which differences
in the trajectories can be measured, providing
the least powerful test of cohort differences
possible in an accelerated design. Second, it
limits the researcher to investigating only dif-
ferences in level across the two cohorts, not
differences in shape or slope. Lengthening the
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period of overlap—even a modest increase
from 1 to 2 years—can reap major rewards.
Had Seidman set the APP older cohort to be-
gin with seventh and eighth graders (instead
of eighth and ninth graders), for example, the
overall developmental record would have
been diminished modestly (from seven to six
grades), but it might have been better able
both to reveal cohort or period effects and fa-
cilitate tests of complex hypotheses about the
shape of the growth trajectory (or hazard
function).

Despite these advantages, we do not advise
researchers to use accelerated designs rou-
tinely; rather, we suggest that they consider
them under certain circumstances. First, these
designs are most suitable when limited re-
sources preclude the fielding of a long-term
data collection effort and when interest fo-
cuses on short-term developmental issues, not
long-term developmental pathways (Farring-
ton, 1991). The piecing together of segmented
growth models and hazard functions can
never replace the information contained in
truly longitudinal studies conducted over
extended periods of time. Second, the geo-
graphic and social mobility of the communi-
ties under study must also be scrutinized—ac-
celerated designs are most appropriate in
stable environments with little migration. In-
or out-migration can cause a researcher to la-
bel erroneously differences across samples as
cohort effects when they are more likely at-
tributable to preexisting, contextual differ-
ences between the groups, such as differences
in socioeconomic status or cognitive ability,
for example, that have nothing to do with the
year that the sample members were born.

Recommendations for Measurement in
Longitudinal Studies

Collect equatable data prospectively

All variables can be classified as either time
invariant or time varying. In longitudinal
studies of development and psychopathology,
outcome variables are time varying by defini-
tion, but predictors, in contrast, may be either
time varying or time invariant. Whenever
time-varying variables are measured, their
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values must be equatable across all occasions
of measurement (Goldstein, 1979), and we
suggest that such data be collected prospec-
tively and not retrospectively.

Seemingly minor differences across occa-
sions—even those invoked to improve data
quality—will undermine equatability. Chang-
ing item wording, response category labels, or
the setting in which instruments are adminis-
tered can render responses nonequatable. In a
longitudinal study, at a minimum, item stems
and response categories must remain the same
over time. Although administering an identi-
cal instrument repeatedly can produce panel
conditioning, empirical studies suggest that
conditioning effects are small (see, e.g., Kasp-
rzyk, Duncan, Kalton, & Singh, 1989) and
their consequences pale when compared with
those of measurement modification (Light,
Singer, & Willett, 1990). The time for instru-
ment modification is during pilot work, not
data collection.

We also strongly recommend prospective
data collection. Even simple information col-
lected by retrospection—on the occurrence
and spacing of events—can be unreliable, im-
precise, and unequatable. Although important
one-time events—such as age at menarche—
may be remembered indefinitely, and highly
salient and stressful events—such as a psychi-
atric hospitalization—may be remembered for
several years, habitual events—such as daily
activities—are forgotten almost immediately
(Bradburn, 1983). Psychological states appear
more prone to recall errors than do social ex-
periences (Lin, Ensel, & Lai, 1997), but even
simple questions about social states have been
shown to be unreliable (Henry, Moffitt, Caspi,
Langley, & Silva, 1994). The longer the pe-
riod of retrospection, the greater the error—
respondents forget events entirely (memory
failure), remember events as having occurred
more recently (telescoping), and drop frac-
tions and report even numbers or numbers
ending in 0 and 5 (rounding).

Data should be collected retrospectively
only when this method of collection does not
compromise their measurement. Administra-
tive records can be invaluable in this regard
as they can be used to reconstruct retrospec-
tive event histories of quality equal to those
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gathered prospectively. If retrospective data
must be gathered directly from individuals,
questionnaires must be constructed carefully.
Standardized checklists are now believed to
be inadequate (Raphael, Cloitre, & Dohren-
wend, 1991), while life-history calendars
(Freedman, Thornton, Camburn, Alwin, &
Young-DeMarco, 1988; Lin et al., 1997),
handheld computers (Shiffman et al., 1997),
and diaries (Silberstein & Scott, 1991) have
been growing in popularity. The most suc-
cessful retrospective data collection strategies
link questions about when an event occurred
to contextual questions about where and why
it happened (Bradburn, Rips, & Shevell,
1987); use narrative formats that allow the re-
spondent, not the interviewer, to structure the
course of the interview (Means, Swan,
Jobe, & Esposito, 1991); and use memory
aids, whenever possible, to improve recall.

Never standardize

Psychologists have a penchant for standard-
ization. When reporting regression results,
they often present standardized regression co-
efficients in addition to, or instead of, raw re-
gression coefficients. When analyzing longi-
tudinal data on the same variable over time,
they often standardize the measures to mean
zero and a standard deviation of one before
analysis.

We understand the desire for standardiza-
tion. Few psychological variables have well-
accepted interpretable metrics. In comparison
to economics, for example, where variables
are measured on commonly understood scales
(e.g., dollars, percentages), psychologists of-
ten work with variables measured in arbitrary
metrics. Few experienced professionals have
an intuitive understanding of what a score of,
say, 15 means on even a frequently used psy-
chological instrument, let alone one devel-
oped solely for a particular study.

Two other well-cited justifications for
standardization depend upon arguments that
are fundamentally flawed. One line of reason-
ing is that standardization helps identify the
“relative importance” of predictors in a re-
gression model (for instance, see Everitt,
1996; Marasciuolo & Serlin, 1988). The argu-
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ment is that standardization eliminates the
difficulties inherent in comparing regression
coefficients when predictors have been mea-
sured on different scales, allowing the pre-
dictor with the largest standardized coefficient
to be declared the “most important.” Unfortu-
nately, identifying the most important pre-
dictor in a statistical model is not that easy
(Healy, 1990) and standardization does little
to help the researcher in this regard (Bring,
1994). The other line of reasoning suggests
that standardization facilitates the comparison
of findings across different samples, allowing
assessment of whether different studies of the
same phenomenon detect effects of the same
magnitude. Yet, as we show below, standard-
ization does just the opposite, rendering it im-
possible to compare results across studies
(Greenland, Schlesselman, & Criqui, 1986).

To understand the difficulties with stan-
dardization, let us review how standardized
regression coefficients are computed. Because
the argument can be understood using regres-
sion models of cross-sectional data, and be-
cause the problems identified simply escalate
when longitudinal data are involved, we begin
with the simpler framework. Consider a re-
gression model linking the level of delinquent
behavior for individual j (DELBEH,) to two
predictors: familial rule-setting (RULES;) and
history of maltreatment (MALTREAT, a
dummy variable coded as 0 or 1):

DELBEH, = B, + B,RULES,;
+B.MALTREAT, +¢, (5)

where B, is the population difference in delin-
quent behavior per unit difference in RULES,

9. We hasten to note that applied researchers are not
solely responsible for their mistaken use of standard-
ized coefficients. We believe that the writers of sta-
tistical software (and documentation for software)
encourage standardization through the misleading la-
beling of output. Some software packages (e.g., SPSS)
use the label beta to refer to standardized regression
coefficients creating the misimpression that these
quantities estimate population regression parameters,
given that statisticians usually write the latter using
B’s. In reality, the population regression parameters la-
beled B and the standardized regression coefficients la-
beled beta have little to do with each other.
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controlling for maltreatment status, B3, is the
population difference in delinquent behavior
between maltreated and comparison children,
controlling for level of familial rule setting,
and € is a residual.

Standardized regression coefficients for
this model can be obtained in one of two
ways. Under the first method, each variable in
the regression model is first standardized by
converting to a Z score (by subtracting the
variable’s sample mean and dividing by its
sample standard deviation)

x*_(-xj_f)
j ’
sX

and then the standardized outcome is re-
gressed on the standardized predictor(s). Equiv-
alently, standardized coefficients can be ob-
tained directly by multiplying raw regression
coefficients by the ratio of the sample stan-
dard deviation of the predictor to the sample
standard deviation of the outcome:

B*:ﬁﬂ

o 6)
In either case, the interpretation is identical—
the coefficient now indicates the standardized
difference in the outcome per standard devia-
tion difference in the focal predictor, control-
ling for all other predictors in the model.

As the interpretation seems straightforward
and the calculations seem innocuous, why do
we argue that standardization is problematic?
First, despite its intuitive appeal, standardiza-
tion does not render the metrics of the predict-
ors (here RULES and MALTREAT) compa-
rable. All that has happened is that the
predictors have been transformed to a mean
of 0 and a standard deviation of 1. What does
it mean for two substantively distinct vari-
ables to possess a common standard devia-
tion? Whenever one or more of the predictors
is a dichotomy (as in this example), such in-
terpretation is near impossible. In this situa-
tion, standardization actually destroys the in-
tuitively appealing interpretation of B, in
Equation 5 replacing it with a convoluted in-
terpretation involving the standard deviation
of a variable that can only take on the values
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0 and 1. Even if the two (or more predictors)
are continuous, standardization does not ren-
der unit differences in the variables compara-
ble. Is a one standard deviation difference in
rule setting the same as a one standard devia-
tion difference in a variable like maternal edu-
cation? The answer to this question depends
upon the sample homogeneity with respect to
these variables, which in turn depends, at least
in part, on researchers’ decisions about target
populations and sampling strategies. Yet stan-
dardization effectively eliminates information
about homogeneity from consideration, creat-
ing the false illusion that coefficients can be
directly compared.

In any statistical model, the only coeffi-
cients that can be compared directly are those
for which the predictors have been measured
in identical units. If one predictor describes
the number of hours that a child spends with
family members and another predictor de-
scribes the number of hours that a child
spends with friends, a researcher can compare
these predictors’ raw coefficients to evaluate
the effect of an extra hour of family time ver-
sus an extra hour of peer time. Even in this
situation, however, the standardized coeffi-
cients present little new information and tell
us nothing about which variable is more im-
portant in predicting delinquent behavior.

Standardized regression coefficients are
not only unhelpful, they can be misleading. If
the standard deviation of either the outcome
or any of the predictors differs across sam-
ples, samples with identical population pa-
rameters (the true values of the regression co-
efficients in Equation 5) can yield strikingly
different standardized regression coefficients
creating the erroneous impression that results
differ across studies. So, too, samples with
distinctly different population parameters can
yield identical standardized regression coeffi-
cients creating the erroneous impression that
the results are similar across studies. More-
over, the discrepancy between the raw and
standardized regression coefficients can be in
either direction (larger or smaller), providing
no rule-of-thumb for evaluating the size of the
underlying effect. The bottom line is that dif-
ferences across samples in the standard devia-
tions of either the predictors or the outcome
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can lead to mistakes about similarities or dif-
ferences of effects.

Lest one think that this type of sample-to-
sample difference is a theoretical contrivance
unlikely to happen in practice, several simple
“thought experiments” suggest the opposite.
Even when sampling from the same target
population, for example, different random
samples will have different standard devia-
tions, with the differences being potentially
more pronounced when sample sizes are small
(as when studying rare populations). When
sampling from different target populations,
the probability of different standard devia-
tions escalates, increasing the probability that
standardized regression coefficients will differ
when true regression coefficients are the same
and that they will be similar when true regres-
sion coefficients differ. This discrepancy is
especially likely when comparing samples re-
cruited using different strategies—say, one
from the schools and another from hospi-
tals—or when one researcher studies a norma-
tive sample and the other studies a clinical one.

As a corollary to this point, differences in
study design can also affect the magnitude of
standardized regression coefficients. In the
model presented in Equation 5, the standard-
ized regression coefficient for MALTREAT
will differ depending upon its standard devia-
tion, which in turn is directly related to the
proportion of maltreated children under study.
All else being equal, as the percentage of mal-
treated children departs from 50% (in either
direction), the standard deviation will de-
crease, producing a decrease in the standard-
ized regression coefficient. As a result, studies
that compare two groups using balanced de-
signs will yield standardized coefficients that
are larger than identical studies using un-
balanced designs, even if the true mean dif-
ference between the groups is identical.
Similarly, two studies can yield identical stan-
dardized coefficients even when the true mean
difference between groups is anything but
identical.

The problems associated with standardiza-
tion escalate in longitudinal studies. Not only
do the issues outlined above continue to
apply, but if the researcher decides to stan-
dardize within waves of data (as is common),
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two additional problems emerge. First, stan-
dardizing the outcome within-wave places un-
necessary and unusual constraints on its varia-
tion. If the collection of individual growth
curves fans out over time (as is common),
standardizing the outcome within-wave essen-
tially increases the amount of outcome varia-
tion manifest during early time periods and
diminishes the amount of outcome variation
manifest during later ones. The resulting stan-
dardized growth trajectories bear little resem-
blance to the raw trajectories and may even
mislead the researcher into thinking that
growth is nonlinear when it is actually linear,
or vice versa (Willett, 1985). Second, because
all longitudinal studies suffer some attrition,
standardization of predictors within waves in-
evitably relies on means and standard devia-
tions that are estimated in a decreasing pool
of subjects (as is especially the case when
studying the occurrence of events in atypical,
high-risk populations such as psychiatric in-
patients). If attrition is nonrandom (and it usu-
ally is), then the successive samples used in
the estimation of the predictor means and
standard deviations will be nonequivalent,
and the standardized values of the predictors
will be noncomparable from wave to wave.
Thus, for example, if the level of antisocial
behavior is studied over time in a group of
hospitalized boys, many of whom drop out of
treatment, move on to a different type of facil-
ity, or refuse to comply with future data gath-
ering efforts, standardized predictor values
cannot be compared from one wave to the
next due to the nonrandom nature of the loss
of subjects from each successive sample.
Given that developmental psychopathologists
are often concerned with studying the process
of adaptive and maladaptive behavior among
high risk samples, such a caution about stan-
dardization within longitudinal studies is es-
pecially pertinent.

Recommendations for the Analysis of
Longitudinal Data

Consider alternative specifications for the
effect of time

Time is the fundamental predictor in both in-
dividual growth modeling and hazard model-
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ing strategies. So, models specified under ei-
ther approach must include at least one
predictor that represents the effect of time. Al-
though researchers typically devote their in-
tellectual energy to modeling the effects of
substantive predictors (e.g., parental divorce,
child maltreatment), we believe that there are
benefits to paying more attention to the mod-
eling the effect of this structural predictor,
time. Most investigators assume that the un-
derlying growth model! is linear in time, and
fail to investigate the possibility that an alter-
native temporal structure might be more real-
istic and more substantively appealing. So,
too, most researchers assume that the baseline
hazard function (By(¢)) is best represented as
a step-function, failing to investigate the pos-
sibility that a simpler, smoother function
might suffice.

Why is it important to specify the effects
of time appropriately? From a substantive per-
spective, the answer is simple—-the specifica-
tion of “the effect of time” describes the shape
of the underlying developmental trajectory. Is
growth linear or nonlinear? Does the hazard
function peak, and if so, when? Are the devel-
opmental trajectories smooth and continuous,
or are there jumps corresponding to time-
linked events in the child’s life? Contempla-
tion of alternative specifications for the effect
of time creates an array of modeling options
that, if used appropriately, can lead to more
accurate summaries of complex development
and facilitate the testing of interesting hypoth-
eses about the effects of substantive variables.
This linkage is perhaps easiest to appreciate
in the context of growth modeling, where the
individual growth parameters defined in a
level-1 model (as in Equation 1) become the
conceptual outcomes in a level-2 model (as in
Equation 2). Specifying the effect of time in
a sensible way at level-1 ensures that the indi-
vidual growth parameters have meaningful
substantive interpretations—at the simplest
level, perhaps as an initial status and a rate
of change. These parameters then become the
outcomes at level 2, permitting investigation
of links between initial status and rate of
change on the one hand and contextual char-
acteristics of the individual on the other.
Changing the specification of time at level 1
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alters the interpretation of the individual
growth parameters and the nature of the ques-
tions that can be addressed at level 2. Finally,
if an alternative specification is indeed a more
appropriate representation of reality, the
model will better fit the data and the statistical
power of associated hypothesis testing will
improve.

What alternative specifications of the ef-
fect of time might we consider? We begin our
discussion of alternative specifications in the
context of individual growth modeling and
then describe how these ideas extend to the
case of hazard modeling. Although the array
of possible specifications is endless, we limit
ourselves to suggesting four that, taken to-
gether, provide a sense of the opportunities
available. For simplicity, we present models
for analyzing data from a hypothetical five-
wave study that follows students annually
from 6th to 10th grade. For the first three
waves of data collection (6th—8th grade) the
students are in junior high; for the remaining
two waves (9th—10th grades), they are in high
school. This simplification allows us to treat
the variable time synonymously with grade.

Figure 5 presents four possible alternative
specifications for the effect of time. Model A
(top left panel) presents a variant of the clas-
sic linear individual growth model, in which
child j’s score in grade i is expressed as a
weighted linear combination of an intercept
(™), a slope (7;;) and an error term unique to
that student on that occasion (g;). In the same
way that the intercept in Equation 1 was de-
fined by centering on age 11, notice that the
temporal predictor here is GRADE-8. As in
Equation 1, the subtraction of eight from ev-
ery value of GRADE creates our interpreta-
tion of the intercept (1) as child j’s true sta-
tus on Y in eighth grade. The interpretation of
the linear slope m;; has its usual interpretation
as the annual rate of change.

Manipulating the interpretation of the in-
tercept (by recentering the predictor repre-
senting time) is the easiest and most common
modification of an individual growth model.
Although the researcher can recenter in many
ways, we chose to illustrate the general idea
by subtracting eight here because eighth grade
is (a) the mid-point of data collection (allow-
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ing the intercept to be interpreted as the “aver-
age value of Y during the study period); and
(b) a substantively meaningful point in time
(the last year of junior high). A subsequent
level-2 model exploring variation in these
level-1 parameters would now identify pre-
dictors of eighth grade status (and growth), a
desirable property for researchers more inter-
ested in status in eighth grade than in sixth.
Willett (1997) extends this idea further by
showing how these models can be expressed
using combinations of final status and growth,
and even final status and initial status.

The remaining reparameterizations for the
effect of time presented in Figure 5 involve
three or more growth parameters, and there-
fore have steeper data requirements (as noted
earlier). Model B (top right panel) is a piece-
wise linear growth model, another extension
of Model A. Because the 5-year data collec-
tion period tracks students from junior high
through high school, this model adds a shift
parameter, Ty, which indicates the differential
in Y that kicks in when child j graduates from
junior high. The resultant growth trajectory is
comprised of two linear segments (hence the
name piecewise) that are parallel (guaranteed
through the use of the single slope for the
variable GRADE-8) but that differ in level be-
fore and after graduation (represented by the
dichotomous predictor, JHSGRAD, coded 0
before graduation and 1 after).

Piecewise linear growth models are useful
when a researcher expects a sudden disconti-
nuity in the growth trajectory at a known
point in time. In the most common applica-
tions, the shift coincides with a substantive
transition—changing grades, graduating from
school, or seasonal fluctuations. In an analysis
of five waves of data collected on students
between the spring of first grade and the
spring of third grade, for example, Bryk and
Raudenbush (1988) used this type of model
with a variable labeled SUMMER DROP,
which registered the decline in achievement
test scores that occurred each fall after sum-
mer vacation. Piecewise linear models can
also be used when analyzing longitudinal data
collected on participants before and after an
experimental manipulation, with the shift pa-
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rameter registering the implementation of the
innovation."

The piecewise linear growth model has a
major, and sometimes unrealistic, constraint:
the segments before and after the shift are as-
sumed to be parallel. Model C (bottom left
panel of Figure 5) relaxes this constraint, al-
lowing the two segments to differ not only in
level but also in slope. Interpretation of Ty,
ny;, and my; remain the same. The additional
parameter 7y indicates the difference in
growth rates between the two periods of time.
Positive values of 7y indicate a steeper slope
in high school; negative values a shallower
one.

Allowing for the possibility of differential
slopes before and after a transition or inter-
vention represents a substantial leap forward
in temporal parameterization. The size and
sign of the slope differential parameter (1)
provides a direct glimpse of the effects of
context on development. A non-zero value in-
dicates that growth rates differ during dif-
ferent phases of children’s lives. Growth in
prosocial activity might be rapid in preadoles-
cence and slower during the teen years, while
growth in risk-taking behavior might be grad-
ual in preadolescence and rapid thereafter.
Moreover, the companion level-2 models
allow researchers to ask whether the differen-
tial in growth rates varies systematically
across children as a function of individual, fa-
milial, or environmental contextual character-
istics. Is the escalation in risk-taking behavior
similar across children, or is it especially pro-
nounced for those living in single-parent
households or inner city neighborhoods? Al-
though use of this model requires five or more

10. A further extension of the piecewise linear growth
model includes a transition coded to correspond to
events in the individual’s life. In a study of body im-
age over time, for example, a researcher might in-
clude a predictor labeled MENARCHE in the level-1
model. Because events like these are not only time-
varying, the periodicity with which they change dif-
fers across people, making interpretation of parame-
ters somewhat more difficult. Nevertheless, although
we do not explore such models here, we hasten to add
that they are interesting and important extensions of
these ideas.
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Figure 5. Alternative parameterizations for the effect of time in individual growth models.
The four panels present an array of specifications for time in the level-1 (within-person)
individual growth model: (A) linear, (B) piecewise linear, (C) piecewise linear with differen-
tial slopes, and (D) quadratic.
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waves of data, we believe that its generality
facilitates exploration of some fascinating
substantive hypotheses about development.

The quadratic individual growth model
(Model D, bottom right panel of Figure 5)
also allows growth rates to differ across the
life span, but unlike the other three models it
assumes that changes in the slope are
smooth—that is, that individual growth is
nonlinear. The addition of the squared pre-
dictor GRADE-8 to the linear model in
Model A permits the growth rate to differ
smoothly and systematically as a function of
age. Special care is needed when interpreting
parameters in nonlinear models. Although m,,
still indicates the true value of Y for child
J in eighth grade, m,, the coefficient on
(GRADE-8), is now the instantaneous rate of
true growth in grade 8—that is, the slope of a
tangent to the curve at eighth grade. The sign
and the size of the curvature parameter (1)
indicates the manner and degree to which the
growth curve departs from a straight line. If
T, =0, there is no curvature—the model is
linear. If 7y is negative, the curve decelerates
over time (as shown in the graph)—the
greater the absolute value of my, the greater
the deceleration. If my; is positive, the resultant
curve would be flipped over (top to bottom),
and growth would be accelerating over time,
with larger values indicating more accelera-
tion.

Quadratic growth models share the same
substantive advantages as the piecewise linear
growth model with differential slopes. They,
too, permit examination of relationships be-
tween differentials in growth rates and con-
textual characteristics of participants, their
families, and their communities. Do the
growth trajectories for abused children mirror
those of control children, or do abused chil-
dren accelerate at a slower rate? But unlike
Model C, which constrains growth to be lin-
ear over the short term with differential slopes
in different phases of life, the quadratic model
assumes that growth rates differ smoothly and
continuously as a function of age. Piecewise
linear models may suffice in short-term stud-
ies with little growth, but when studying a
rapidly changing outcome, or when studying
people over a long period of time, quadratic
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(and even higher order polynomial) models
may provide a better fit. Nonlinear specifica-
tions have two further advantages as well.
First, because they contain fewer parameters,
they have less costly minimum data require-
ments. The quadratic model, for example, can
be fit with just four waves of data. Second,
they can easily be extended to more complex
trajectories through the use of higher order
polynomials. Willett (1997) provides a de-
tailed discussion of these and related ideas.

So far, we have discussed alternative speci-
fications for the effect of time only in the con-
text of individual growth modeling. Although
not immediately obvious, all the parameter-
izations we have discussed can also be used
in discrete-time hazard models. When we in-
troduced the hazard model in Equation 3, we
purposefully did not indicate any specific pa-
rameterization for time. Instead, we indicated
the baseline hazard profile as Py(¢), a com-
pletely general representation. We did so
because, historically, researchers using the
two different methods have differed in their
approach to parameterization. Those using
growth modeling typically begin (as we have)
with a linear formulation, adapting to more
complex representations only as necessary.
Those fitting discrete-time hazard models, in
contrast, typically begin with a completely
general specification for the time predictor—a
step function represented by a series of
dummy variables, one per time period—and
then explore smoother and less complex pa-
rameterizations.

We illustrate these ideas using 11 years of
longitudinal data collected by Widom (1989)
in her study of the sequelae of childhood
abuse and neglect. Keiley and Martin (1998)
reanalyzed these data using discrete-time haz-
ard modeling to predict whether and, if so,
when subjects were first arrested for a juve-
nile offense. Although less than one-quarter
of the children were arrested before age 18, a
pronounced developmental pattern was asso-
ciated with age at first arrest. It is this pattern
that we explore here. Figure 6 presents two
alternative baseline hazard models depicting
the risk of first arrest as a function of child
age. The fainter segmented line represents the
baseline hazard function estimated using a
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Figure 6. Alternative parameterizations for the effect of time in hazard models. Fitted haz-
ard functions describing the age at first juvenile arrest using smooth (darker curve) and
totally general (lighter joined lines) specifications for the effect of time.

completely general representation for [y(z).
As shown in the figure, this model expresses
logit hazard as a linear function of 11 dummy
variables, Dy—Dg, at one per year. Each coef-
ficient B then represents the value of logit
hazard in that time period—f3; represents logit
hazard for 8-year-olds, B, for 9-year-olds, and
so on. We plot the fitted hazard function by
transforming each of these coefficients using
the standard formula for reexpressing logits:
hazard = 1/{1 + ¢}. Notice that hazard is mi-
nuscule in the preteen years, rises during early
adolescence, and peaks at age 15 years. After
that, the risk of first arrest among those who
have not yet been arrested declines. The
smooth parameterization—the darker curve—
replaces the general specification with a cubic
spline (also known as a second-order polyno-
mial). In place of 11 dummy variables repre-
senting time, three continuous variables—
AGE, AGE’, and AGE’—now represent the
effect of time. Notice how well the smooth
curve approximates the jagged one. Keiley
and Martin (1998) show that the smooth func-
tion (which requires only four parameters for
specification) is preferable to the completely

general representation (which requires eleven)
because the goodness-of-fit statistic associ-
ated with the former closely approximates that
associated with the latter, using far fewer pa-
rameters. We present a more detailed discus-
sion of these types of model comparisons in
Willett and Singer (1993) and Singer and Wil-
lett (1993).

In practice, how can a researcher select an
appropriate specification for the effect of
time? We believe that at least four issues
should be considered. First, different specifi-
cations have different data requirements. The
more parameters involved, the more waves of
data needed. Although researchers fitting haz-
ard models typically have sufficient data to
explore the completely general formulation
presented in Figure 6, those fitting growth
models often work within tighter constraints.
(This is one reason why we recommend that
researchers extend the length of their longitu-
dinal investigations beyond the three waves
currently considered the norm.) Second, re-
searchers should ask whether theory may sug-
gest a particular functional form. Does theory
suggest that growth is smooth, or does it sug-



420

gest that the outcome changes in fits and
starts? Do the gaps correspond to particular
events in the child’s life, or do they occur
seemingly at random? Third, does previous
research suggest a particular functional form?
In studies of human lifetimes, for example,
where hazard models are used routinely, the
shape of the baseline hazard function is so
well established that researchers typically
adopt particular parametric forms (e.g., Lee,
1996). Fourth, what functional form do the
data suggest? Examination of empirical
growth trajectories and sample hazard func-
tions computed separately by values of each
predictor can often suggest reasonable places
to begin.

Always test for interactions, particularly
between substantive predictors and time

Social scientists often display a “main ef-
fects” bias. When fitting statistical models,
they explore the main effect of each predictor,
perhaps alone and after controlling statisti-
cally for the effects of other predictors. But
why should predictors operate only as main
effects? Many developmental theories identify
important contextual predictors whose effects
should differ systematically across people,
across places, or across the life span. For ex-
ample, the effect of restrictive parenting on
the cognitive functioning of children from
high-risk families (i.e., families within high-
crime areas) has been shown to be positive,
perhaps offering a protective buffer of a sort,
while such parenting in low-risk families has
been proven to be counterproductive to chil-
dren’s cognitive development (Baldwin, Bald-
win, & Cole, 1990).

Whenever the effect of one predictor dif-
fers by levels of another predictor, we say that
the two predictors interact.'' Interactions are
powerful tools for exploring subtle (and not
so subtle) differences in how individuals react
under seemingly similar circumstances and
thus for studying the differential effects of

11. Although statisticians prefer the term interaction,
many psychologists refer to these situations by saying
that the action of one predictor moderates the effect
of another.
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context on developmental outcomes. For ex-
ample, in line with the concept of multifinal-
ity within the field of developmental psycho-
pathology (Cicchetti, 1990), why do some
contexts not always lead to the same psycho-
pathological outcome, such that some children
are resilient when faced with a parental di-
vorce, while others descend into a cycle of
psychopathology? Why do some individuals
respond positively to prevention programs,
while others remain resistant? Addressing
these types of research questions requires the
inclusion of interaction terms in statistical
models.

Researchers who do explore interactions
typically focus on interactions among sub-
stantive predictors. In their study of the de-
velopment of schizophrenia, for example,
Walker and colleagues (1996) explore interac-
tions between stress and a variety of physio-
logical and psychosocial predictors. But re-
searchers investigating growth and event
occurrence can explore a more fascinating
type of interaction: the interaction with time.
When a predictor interacts with time, its im-
pact on the outcome is different in different
time periods. By exploring interactions with
time, a researcher can determine whether a
predictor’s effect (e.g., parental attachment)
remains the same across the life span, or
whether its effect fluctuates as individuals
age. In a study of depression in adolescents,
for example, the effect of family factors on
depression may decline as children mature
while the effect of peer factors may increase.

Interactions with time can perhaps be best
understood via an example that compares the
effects of two predictors—one that does not
interact with time and one that does. To focus,
we return to the discrete-time hazard models
specified for the first onset of depression data
earlier. Recall that when we introduced the
time-varying predictor representing parental
divorce (PARDIV(?)), we examined the rela-
tionship between it and the risk of depression
(Equation 4; Figure 3). PARDIV(?) is a time-
varying predictor—its value goes from 0 to 1
if, and when, parents divorce. Now, we ask if
its effect on hazard is really constant over
time (as we have stipulated so far). If the ef-
fect is time invariant, then the impact of pa-
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rental divorce on the risk of onset is the same
regardless of whether the divorce takes place
during childhood, adolescence, or adulthood.
If the effect of parental divorce differs over
time, in contrast, divorce may have a larger
effect on the risk of depression among chil-
dren, who are still living at home, say, than
among adults, who have already moved out of
the house.

But now we appear to have modeling di-
lemma. The discrete-time hazard models pos-
ited in Equations 3 and 4 do not permit a pre-
dictor’s effect to differ with time. In these
models, proportional-odds models, the hazard
profiles have a special property: in every
time-period (¢) under consideration, the effect
of the predictor on logit-hazard is exactly the
same. In Equation 3, for example, the vertical
shift in the logit-hazard profile for women is
always B, and, consequently, the hypothesized
logit-hazard profiles for women and men have
identical shapes, since their profiles are sim-
ply shifted versions of each other. Generally,
in proportional-odds models, the entire family
of logit-hazard profiles represented by all pos-
sible values of the predictors share a common
shape and are mutually parallel, differing only
in their relative elevations. If the logit-hazard
profiles are parallel and have the same shape,
the corresponding raw hazard profiles are (ap-
proximate) magnifications and diminutions of
each other—they are proportional.”” Because
the models presented so far include predictors
with only time-constant effects, the fitted haz-
ard functions displayed appear to have the re-
quired proportionality.

But what if the effects of some predictors
are not time-constant? What if some hazard
profiles corresponding to different values of
the predictor are not proportional to each
other? Many predictors will not only displace
the logit-hazard profile, they will alter its
shape. If the effect of a predictor varies over
time, we must specify a nonproportional

12. For pedagogic reasons, we have taken mathematical
liberties here. In discrete-time models, the hazard
probability is usually small (say, less than .15 or .20).
When discrete-time hazard is about this magnitude, or
less, the approximation tends to hold quite well (see
Singer & Willett, 1993, for further discussion).
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model that allows the shapes of the logit-haz-
ard profiles to differ. To include such an ef-
fect in our hazard models, we simply include
the cross product of that predictor and time as
an additional predictor.

To illustrate the types of conclusions that
can be gleaned from testing whether a pre-
dictor interacts with time, Figure 7 presents
the results of fitting two discrete-time hazard
models to the depression data but introducing
a new predictor of one aspect of family con-
text—number of siblings (NSIBS).13 Because
NSIBS is a continuous variable (whose values
vary from O to 26), we present fitted hazard
profiles for two prototypical individuals:
those who were only children (no siblings)
and those who came from larger families (six
siblings). The figure presents fitted hazard
profiles from two distinct models: a main-ef-
fects model (top panel) and an interaction-
with-time model (bottom panel). The main ef-
fects model suggests that siblings protect
against depression: for both men and women,
the greater the number of siblings, the lower
the risk of onset. The four fitted hazard pro-
files appear proportional because the main ef-
fects model constrains the effect of NSIBS to
be the same in each time period.

But a more accurate and complex story
emerges from the interaction-with-time model
displayed in the bottom panel, in which the
effect of NSIBS is allowed to vary over time.
Comparing the fitted hazard functions from
the interaction with time model with those
from the main effects model illustrates the un-
tenability of the proportionality assumption,
due to the statistically significant interaction
between NSIBS and time. The hazard func-
tions in the bottom panel are clearly not pro-
portional. In childhood, when individuals are
still living at home, family size does have a
protective effect: boys and girls from larger
families are at lower risk of having an initial
depressive episode. Over time, however, the
protective effect of family size diminishes and

13. Because of data limitations, the values of this pre-
dictor are assumed to be constant during an individu-
al’s lifetime. If we knew when the respondent’s sib-
lings were born, we could have coded this predictor
as time varying.
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Figure 7. Including an interaction with time in hazard models. Fitted hazard functions de-
scribing the age at first onset of depression, by gender and the individual’s number of
siblings, from two discrete-time hazard models. The top panel is a main effects model in
which the effect of number of siblings is constant over time; the bottom panel is an interac-
tion-with-time model in which the effect of number of siblings varies over time.

by the time an individual reaches his or her
early thirties, the effect is virtually nonexis-
tent. Instead of having a constant vertical sep-
aration in logit-hazard space, the relative dif-
ferences between the hazard functions differ,
being larger in childhood and trivial in adult-
hood. Simply put, the effect of family size on
the risk of depression interacts with time.
The ability to include, and test the impor-
tance of, interactions with time as predictors

in growth models and hazard models repre-
sents a major analytic opportunity for re-
searchers investigating the effects of context
on development. When studying the behavior
of individuals over very long periods of time,
it is logical to ask whether the effects of im-
portant contextual predictors vary as people
pass through different life stages. Although
the effects of some predictors will remain un-
changed with an individual throughout his or
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her lifetime, the effects of others may dissi-
pate, or increase, over time.

We believe that interactions with time are
everywhere and would be found more often
if researchers systematically and intentionally
looked for them. Present data analytic practice
(and the widespread availability of prepack-
aged computer programs) permits an almost
unthinking (and often untested) adoption of
proportional hazards models (Cox regression),
in which the effects of predictors are con-
strained to be constant over time. We have
found, however, in a wide variety of sub-
stantive applications including not only our
own work on employment duration (Murnane,
Singer, & Willett, 1989; Singer, 1993a,
1993b) and age at entry into day care (Singer
et al., in press) but also others” work on topics
such as age at first suicide ideation (Bolger
et al., 1989) and child mortality (Trussel &
Hammerslough, 1983), that interactions with
time seem to be the rule, rather than the ex-
ception. The key is to test the tenability of the
assumption of a time-invariant effect. For a
description of analytic methods for achieving
this, we refer the reader to Singer and Willett
(1993) and Willett and Singer (1993).

How do these ideas extend to the case of
growth models? Although it is not immedi-
ately obvious, the traditional individual growth
model specified in Equations 1 and 2 actually
assumes an interaction with time. This can be
seen most clearly by substituting the level-2
equations back into the level-1 equation to
yield the single combined model:

Y; = Boo + B1o(AGE; — 11) + Bo(FEMALE;)
+ B (FEMALE,)(AGE; - 11)
+ {uy +u (AGE; — 1) +g;}. (7)

Notice that the structural part of the combined
model (presented on the first line of Equation
7) includes three predictors—a main effect of
AGE, a main effect of FEMALE, and a cross
product of FEMALE and AGE. This cross
product term represents the interaction be-
tween FEMALE and AGE. The parameter [3,,,
therefore, represents the magnitude of the dif-
ference in growth rates for boys and girls, and
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a test of its statistical significance indicates
whether the predictor (here FEMALE) inter-
acts with time. When we fit this model to the
NLSY data, we found that the growth rates
did not differ by gender; in other words, there
was no statistical interaction. Were this a sub-
stantive paper, we would therefore modity the
level-2 equation in Equation 2 to eliminate the
effect of FEMALE on the level-1 slope pa-
rameter (m;;) and refit the model to data. If
prototypical growth trajectories were then
plotted by gender, we would see a pair of par-
allel lines—one for boys and one for girls—
with identical slopes, illustrating that the ef-
fect of gender did not interact with time (cf.
Figure 1, right-hand panel).

Postscript

We believe that the methods of individual
growth modeling and survival analysis pre-
sent exciting opportunities in answering many
of the developmental questions with which
developmental psychopathologists and others
are concerned. These methods allow for the
analysis of longitudinal data and thus facili-
tate the process of uncovering the various
pathways along which development may oc-
cur. Such a pathways approach is essential for
developmental psychopathologists who seek
to study the course of both maladaptive and
adaptive behavior throughout the life span
(Cicchetti, 1993). In addition, the methods
outlined in this paper allow for the incor-
poration of any number of predictors of de-
velopment, including important contextual
predictors such as family structure, school en-
vironment, or neighborhood climate, and thus
provide psychopathologists with the tools
both to study the range of outcomes that may
be associated with a particular set of predict-
ors (multifinality) and to explore how similar
outcomes may result from a variety of con-
texts (equifinality). It is our hope that by
adopting the statistical methods discussed in
this paper and following the guidelines we
suggest, the study of developmental psycho-
pathology and, in particular, the study of de-
velopment in the context in which it occurs,
will be enhanced.
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